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Abstract—The success and impact of activity recognition algo-
rithms largely depends on the availability of the labeled training
samples and adaptability of activity recognition models across
various domains. In a new environment, the pre-trained activity
recognition models face challenges in presence of sensing bias-
ness, device heterogeneities, and inherent variabilities in human
behaviors and activities. Activity Recognition (AR) system built
in one environment does not scale well in another environment,
if it has to learn new activities and the annotated activity
samples are scarce. Indeed building a new activity recognition
model and training the model with large annotated samples
often help overcome this challenging problem. However, collecting
annotated samples is cost-sensitive and learning activity model
at wild is computationally expensive. In this work, we propose
an activity recognition framework, UnTran that utilizes source
domains’ pre-trained autoencoder enabled activity model that
transfers two layers of this network to generate a common feature
space for both source and target domain activities. We postulate
a hybrid AR framework that helps fuse the decisions from a
trained model in source domain and two activity models (raw and
deep-feature based activity model) in target domain reducing the
demand of annotated activity samples to help recognize unseen
activities. We evaluated our framework with three real-world
data traces consisting of 41 users and 26 activities in total. Our
proposed UnTran AR framework achieves ≈ 75% F1 score in
recognizing unseen new activities using only 10% labeled activity
data in the target domain. UnTran attains ≈ 98% F1 score while
recognizing seen activities in presence of only 2-3% of labeled
activity samples.

I. INTRODUCTION

Activity recognition (AR) is a prolific research area in

the era of Internet-of-Things (IoT), pervasive, wearable and

smart computing [1][2][3]. With the proliferation of smart

sensing devices, (i.e., smartphone, smartwatch etc.) various

applications related to health care monitoring, obesity manage-

ment, interactive gaming etc., have constantly been evolving

to improve the human-centric services in the smart living

environments. In contrast, AR models are typically built to

recognize a predefined and limited set of activities, for ex-

ample sitting, running, walking, exercising etc. In addition,

the emerging diversity of wearable devices, their sensing

capabilities and heterogeneities, and variations in human activ-

ities and their daily life-styles undermine the performance of

known AR models. These traditional approaches solely rely

on the specific environmental settings, heuristically selected

handcrafted features and a predefined set of activities trained

with a large set of annotated samples. Therefore, in general,

obtaining reliable ground truth annotated activity samples is

crucial to adapt AR systems in the target environment.

Scaling existing AR system is challenging due to the

presence of handcrafted features that are dependent on domain

knowledge and predefined environmental settings. Finding the

optimal set of features across a predefined set of activities also

requires domain expertise. To overcome these challenges, deep

learning based unsupervised techniques have been proposed

that help to choose an optimal set of domain dependent fea-

tures [4]. However, training a deep network is computationally

expensive, and requires a large set of activity samples tuning

in the target domain. Moreover, limited amount of training

samples in the target domain causes overfitting and network

biasness that pose challenges for adapting AR models. Re-

searcher proposed various domain adaptation techniques [5][6]

that mostly involved co-training [7]. However, co-training a

deep network requires both source and target domains’ activity

samples during the learning phase, which may not always

be available. The most interesting insights of using multi-

layered deep learning techniques is that it generates most

generic features in the lower-layers and most specific features

in the deeper layers [8]. Motivated by this, we bootstrap our

AR framework by transferring the learned weight and bias

parameters of a pre-trained deep network from the source

to target domain. This partial layer knowledge transferring

helps mitigate the need for domain dependent handcrafted

features, reduces the computational cost, and minimizes the

data distributions divergence between the source and target

domains.

The presence of new activities in the target environment

(domain) poses challenges when scaling an existing AR sys-

tem. For example, AR model capable of recognizing exercising

activities (such as push ups) can not correctly distinguish new

activity like playing basket ball in the target domain. Evaluat-

ing the performance of existing AR models requires a large set

of annotated activity samples in the target domain. However,

it is not feasible to ask users to provide annotated samples

for each of the activity instances and train a new activity

model that can adapt the characteristics of a new environment.

Our assumption is that the user can provide a small amount

of annotated activity samples in the target domain. However,

training new activity model with these small amount of labeled

activity samples encounters two challenges: i) availability of
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limited training data and ii) presence of imbalanced and unseen

activities in the new domain. Therefore, it is difficult for the

traditional AR model to cope with the new challenges while

achieving the required activity recognition performance. In

this work, we advocate to use the source domain activity

recognition model in conjunction with two variants of target

domain activity recognition models – statistical features based

AR model and deep feature based AR model which help to

mitigate the scarcity of label information in the target domain.

The key advantage of our activity recognition model is that

it leverages the performance of existing AR model by learning

the variability of the activity patterns using a small amount

of labeled activity samples in the target domain. The key

contributions of this work are summarized below.

• We exploit transfer learning enabled deep features rep-

resentation techniques to mitigate the scarcity of activ-

ity samples in an unsupervised manner. We leverage

our feature learning approach with a limited amount of

training samples by transferring the first two layers of

the source trained deep sparse autoencoder with deep

learning classifier in the target domain. Our model helps

percolate the existing weights and biases of the trained

network in the target domain and constructs generalized

feature space representation which help overcome the

diversity across users’ activities, environmental settings

and sensing biasness.

• We transfer label information from source domain to tar-

get domain by utilizing source domain classifier and fuse

decision with two target domain classifiers - handcrafted

and deep networked generated feature based classifier.

Fusing the knowledge of these three classifiers altogether

helps solve the scarcity of label information and the

imbalanced class problem in the target domain.

• We evaluate our AR framework, UnTran on three real-

world activity data traces and demonstrate the effective-

ness and efficacy of our proposed cross-domain activity

recognition model.

II. RELATED WORK

In this section, we review the existing work in three major

areas: traditional machine learning approaches, deep learning

and transfer learning in activity recognition.

A. Activity Recognition

In wearable pervasive computing, a plethora of research

exists that recognizes human activities (i.e., playing basket

ball, walking, standing etc.) [9][10][11][2]. Researchers em-

ployed various supervised machine learning algorithms (SVM,

Decision Trees, Random Forest etc.) to classify human activity

where these classifiers were trained with a large set of labeled

activity samples. These traditional supervised machine learn-

ing algorithms are tuned to specific settings and do not perform

well if deployed in a new environment where variations in

users activity patterns, diversity of devices, and sensing bi-

asness are omnipresent [12][2][3]. Traditional supervised AR

models utilized handcrafted features. However, these features

extraction process requires domain expert knowledge [13]. AR

models trained with handcrafted features are not robust and

scalable because of the existence of tightly bound feature space

to a specific setting and the fixed number of activities in the

source environment.

Learning features from unlabeled activity samples has also

been explored recently [14][15]. These methods learn feature

spaces from a large set of activity samples in the target domain.

Therefore, reemploying the existing AR models requires a

lot of annotated activity samples in the target domain. Re-

searchers have investigated semi-supervised methods that help

learn parameters using both labeled and unlabeled activity

samples [16][17]. These techniques alleviates ground-truth

annotation problem with a smaller pool of labeled samples

from a large set of unlabeled activity samples. However, these

methods are error prone and typically unable to replace the

need for ground-truth annotated data from experts. In addition,

it is always not feasible to collect a large number of labeled

data traces or make requests to the human annotators. In an

attempt to bootstrap an existing trained activity model, in this

work, we advocate to use a small subset of unlabeled samples

in addition with a small subset of labeled activity samples in

the target domain.

In recent times, unseen activity recognition approaches

have also been investigated. NuActive [18] proposed outliers-

aware attribute based unseen activity recognition method using

unlabeled activity data traces and showcased classification

performance by training AR model with selected activity sam-

ples using active learning. However, the performance of the

attribute based activity recognition model degrades in presence

of existing and new activities. The attribute based activity

recognition models assume that each activity has a unique set

of attributes. [9] proposed attribute and feature based fusion

method to improve the performance of AR model with the help

of labeled activity samples. Although [18], [9] achieved better

performance in inferring new activities, the authors failed to

consider the sensing biasness, activity patterns, variations, and

user diversity in the targeted domain. Most of the existing

work discovered new activities within the same domain and

also relied on the unique set of manually defined attributes

for each of the activities. Moreover, defining attributes of

each activity is a time-consuming task, and requires a lot of

efforts and domain knowledge. In this work, we reduce this

effort by transferring the knowledge from the source to target

domain in an autonomous way by using deep transfer learning

techniques. Our proposed AR framework helps mitigate the

scarcity of labeled activity samples by utilizing labels infor-

mation from source domain to target domain.

B. Deep Learning

Various research have focused on learning features from

sensor data traces using deep learning techniques [19][20][21].

Deep learning based feature extraction method has been ap-

plied for the activity recognition research problem. The main

objective of this approach is to learn hidden activity patterns

from the sensor data traces and discover meaningful patterns
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Fig. 1: Overview of our activity recognition approach. (a) Source domain labeled activity instances, (b) Target domain contains

both unlabeled and few labeled activity instances, (c) Common feature space for classification, and (d) Resulting activities

after classification. Note that different shapes correspond to different activities.

without the human intervention. These automatic hidden pat-

terns can be discovered with two deep learning approaches

– supervised and unsupervised [22][23][24]. Supervised deep

feature learning approaches are computationally expensive and

require a large set of annotated samples. On the other hand,

unsupervised deep learning methods demand a large set of

unlabeled training samples [21][23]. Both of these methods

are computationally expensive and require a significant amount

of training time to adjust the network parameters. None of

these approaches work well in presence of scarce activity

samples. In order to deploy these AR models, further tuning

of parameters is necessary in the target environment. In this

work, we exploit the benefits of existing pre-trained sparse

deep autoencoder enabled activity recognition model in the

source domain to reduce the required samples in the target

domain.

C. Transfer Learning

Scalability and adaptability are the persistent research chal-

lenges in activity recognition application domain. Transfer

learning based activity recognition techniques have been inves-

tigated recently [25][26][27]. Nonetheless, a limited number

of aspects of transfer learning enabled activity recognition has

been investigated. [26] proposed uninformed transfer learning

algorithm that help minimize cross-subject variability to scale

human activity recognition. The authors proposed to transfer

label information from the source domain to recognize unla-

beled activities in the target domain and assumed availability

of a large set of unlabeled data samples with similar activities

in the target domain. [28] addressed the versatility of sensor

modality and sensor position independence by transferring a

similar set activity labels from an existing trained sensor node

to a new sensor node without any user intervention. In contrast,

we propose a framework that is able to infer activities with a

limited number of samples and in presence of new activities

in the target domain.

III. OVERVIEW OF UNTRAN FRAMEWORK

We briefly outline the different algorithmic components of

our proposed activity recognition framework, UnTran in this

section.

A. Problem Settings

We design UnTran framework for recognizing unseen ac-

tivities in presence of user activity patterns diversity, sensing

biasness and limited activity samples in the target domain.

We assume that the source domain has a significant amount of

labeled activities and a pre-trained activity model. Our UnTran
framework works with limited activity data, imbalanced and

unseen activities. To tackle this, we propose to construct

common feature space where similar activity samples help

generate similar feature space. However, with a limited activity

samples, AR model suffers from overfitting problem in the

deployed target domain. To address this, we combine the

inference decisions from multiple AR models (one source AR

model and two target AR models) and deploy that to recognize

activities in the target domain. Fig. 1 represents the overview

of our activity recognition approach.

Mathematically we define our problem as follows. Let

source domain training data Ds = {x(s)
i , y

(s)
i }Ns

i=1 =

{Xs,y(s)}, where x
(s)
i ∈ Rd denotes d-dimensional source-

domain instance and y
(s)
i denotes the corresponding label of

Cs categories. We assume that the target domain contains

d-dimensional unlabeled data instances and target domain

data are represented as Dt = {x(t)
j , y

(t)
j } = {X(t),y(t)}

where y(t) is the class label to infer. We also assume that

target domain constitutes both seen and unseen activities and

contains activity categories, Ct = {Cun ∪ Csn}, where seen

activities categories, Csn and Cun represents unseen activity

categories. Due to the heterogeneity in the target domain,

marginal probability distributions of data between these two

domains are different (P (Xs) �= P (Xt)). It is worth to note

here that transfer learning based approach works when both
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Fig. 2: Overall System Architecture

the source and target domains are related, which implies that

the generated feature space between two domains has explicit

or implicit relationship to each other.

For example, the source and target domains activity sets

are {‘Sitting’, ‘Standing’, ‘Cooking’, ‘Eating’} and {‘Sitting’,
‘Standing’, ‘Cooking’, ‘Biking’, ‘Jogging’}, respectively and

both the domains contain accelerometer sensor signal traces.

In this scenario, target domain has two unseen activities and

the total number of activity categories are imbalanced.

B. System Architecture

The overall UnTran architecture is shown in Fig. 2. UnTran
consists of three main components.

Data Processing: This module filters raw sensor signals

and then extracts low-level features from these pre-processed

raw sensor data.

Feature Encoding: This module uses first two layers of

source trained autoencoder and generates common features in

the target domain. Data distribution differences are minimized

by transferring the two layers from source domain that helps

generate generic features. These features are then used in the

next module.

Activity Recognition Model: In this module, we fuse the

knowledge of one source domain AR model and two target

domain AR models. Source domain labeled samples are passed

through the feature encoder and then encoded features are used

to train classifiers. In the target domain, one classifier is trained

with deep features and other classifier is trained with low-level

raw features. Finally, we fuse the knowledge of these three AR

models to infer activities in the target domain.

IV. SYSTEM DESIGN AND ALGORITHM

In this section, we discuss the details of our activity recog-

nition framework.

A. Data Processing

Our framework is agnostic and works with any kinds of

sensor signals. In this work, we use accelerometer sensor

signals to demonstrate the effectiveness of our proposed

framework. The collected sensor signals for the activities are

noisy and need to be processed before the activity recognition

process. We processed our sensor signals in two steps -i)
Data Preprocessing, and ii) Feature Extracting. In the data

processing step, collected raw sensor data is filtered using a

low-pass median filter. We determine the band of the filter

by applying FFT on the data. This filtered data is then used

to create frames. We created each frame in a fixed-width

sliding window having a length of 50% overlap per frame.

In the feature extracting step, the previously generated frames

are used to compute various statistical and frequency domain

features. Time domain features like mean, standard deviation

etc., and frequency domain features like energy, entropy etc.,

of the signals, are calculated using Fast Fourier Transform

(FFT) on each frame. We normalized the computed features

which is then fed into the feature encoding process, that helped

reduce the training time of the autoencoder.

B. Feature Encoding (FE):

Autoencoder (AE) is a feed-forward neural network that

contains an input layer, an output layer, and one or more in-

termediate hidden layers between them [29] [30]. Autoencoder

contains two processes - i) encoding, and ii) decoding. Given

an input x, autoencoder encodes this input through four layers

encoding process and then feed this encoded output as input

to the decoding process to generate an output x̄. In this work,

we use four layers deep autoencoder for feature encoding.

Mathematically, the encoding and decoding processes of the

deep autoencoder are represented as follows.

Encoding Layers:

h
(1)
i = f(W1x

(1)
i + b1),

h
(2)
i = f(W2h

(1)
i + b2),

h
(3)
i = f(W3h

(2)
i + b3)

h
(4)
i = f(W4h

(3)
i + b4)

(1)

Decoding Layers:

h̄
(4)
i = f(W′

4h
(4)
i + b′

4),

h̄
(3)
i = f(W′

3h̄
(4)
i + b′

3),

h̄
(2)
i = f(W′

2h̄
(3)
i + b′

2),

h̄
(1)
i = f(W′

1h̄
(2)
i + b′

1)

x̄i = h̄
(1)
i

(2)

where f(.) is a nonlinear activation function. We use

sigmoid function as a nonlinear activation function.

Autoencoder helps discover activity patterns by compress-

ing the sensor signals (x) in the encoder then decompress

the output of the encoder to generate an output which is

similar to the sensor signal (�x). However, this compression

process generates low-dimensional features which is similar to

PCA [31]. The disadvantage of this feature discovering process

is that the hidden layers’ dimension must be kept smaller

than the encoder input dimension. As a result, reconstructing

similar output as the raw sensor signals in the decoding

process becomes challenging. Therefore, we employ low-level

features as an autoencoder input. However, this extracted

features reduces the input dimension, hence implicitly restricts

the number of neurons in each hidden layer that results to
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a low-dimensional PCA feature that hinders in finding the

generalized feature space. We, therefore, use a sparse hidden

layer as the first hidden layer and feed low-level features

into this layer. The dimension of our sparse layer is larger

than the raw features dimension and in order to get the

meaningful feature representation, we add sparse constraints

in this layer. Additional three layers are used to establish

non-linear correlation among the activities. We named this

modified autoencoder as Deep Sparse Autoencoder (DSAE).

Our DSAE learns weights matrices and bias vectors of the

hidden layers by minimizing the following reconstruction

error.

Jaen(W, b) = min
W,b

||x− x̄||2 + α

NL1∑
i=1

Φkl(ρ||ρ̂i) (3)

The first term of Eqn. 3 represents the reconstruction cost

of our DSAE where W and b denote weights and biases of

encoding and decoding layers, respectively. the second term, of

Eqn. 3 represents Kullback-Leibler (KL) divergence between

the sparsity constraint ρ and average activation ρ̂ of the first

hidden layer. The average activation of a hidden unit, j is

computed as follows.

ρ̂j =
1

m

m∑
i=1

[
aL1
j xi

]
(4)

where m denotes the number of low-level feature inputs.

We employ stochastic gradient descent (SGD) [32] method to

determine the changes of weights and biases and update the

network parameters accordingly.

We assume that our source domain has a large number of

labeled activity samples. DSAE helps learn inherent activity

characteristics in an unsupervised fashion. Establishing the

correlation between the activity and corresponding features

requires tuning the network parameter with respect to the

activity class. Hence, we append a softmax layer at the end of

the encoding layer to encode class labels in the source domain.

To train this source domain classifier, we use the following

cross-entropy objective function.

min
θ

(
− 1

n

n∑
i=1

k∑
j=1

1{yi = j} log eθ
T
j xi

k∑
l=1

eθ
T
l xi

)
(5)

where 1(.) is an indicator function and provides 1 when the

condition is true otherwise 0. We employ stochastic gradient

descent (SGD) [32] method to tune the network parameters.

The performance of the source trained classifier degrades

while deploying in the target domain due the marginal distri-

butions of the data between two domains and unseen activity

samples. Lower layers of this source domain network produce

most generic features and higher layers (closer to classifier

layer) generates most domain-specific features [8]. We transfer

the first two layers of the source trained network to produce the

common feature space in the target domain. We choose the first

two layers due to its capability of generating generic features

and preserving domain information. Selection of the number
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Fig. 3: Common Feature Space Generation

of layers can also be performed empirically. We also see

that our assumption holds empirically (details are presented

in section V-I). Target domain activity instances are then fed

into this partial network to produce most common features

space. Fig. 3 represents this transfer learning enabled feature

encoding process.

C. Activity Recognition Model (ARM)

Our activity recognition model consists three classifiers- one

source domain classifier and two target domain classifiers.

Source domain annotated activity instances are fed into the

feature encoding layers (first two layers as shown in Fig. 3

(a)) to produce common features. These generated features

can be used to train any standard classifier. Due to the optimal

implementation, we use support vector machine (SVM) [33].

SVM finds the maximum margin hyperplane w.x − b = 0,

that maximizes the distance between the activity instances and

hyperplane by minimizing the following problem.

minimize
(w,b)

1

2
wwT + C

n∑
i=1

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi, and ξi ≥ 0, ∀i.

where xi and yi represents the ith the feature vector and

activity label, respectively. φ(.) corresponds to kernel function

that transforms the separable feature space. The parameter, ξi
represents the degree of false classification. Capacity constant,

C controls overfitting and error of the classifier.

Generated source domain deep features are used to train

a SVM classifier and we named it as ’Source AR’. Target

domain low-level features are also fed into the feature encoder

to produce deep features and which will be used to train

a SVM classifier in the target domain and we named it as

’Target Deep AR’. We also train a SVM classifier with low-

level features in the target domain and named it as ’Target Raw

AR’. Since the target domain has a few number of labeled

activity samples, we fuse these three models to overcome

the insufficient labeled data problem in the target domain.

Before fusing these classifiers, we determine whether an

activity sample belongs to an existing class or a new class.

To determine if an activity sample belongs to a new class,

we train one-class SVM with all the source domain labeled

samples as the seen class. If a sample is outside of the source
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activity distributions then it is detected as a new class. This

novelty detector helps formulate fusion function.

The target domain classifier model trained with a few

number of labeled activity samples underestimates the class

conditional probability, P (yi|x), because a limited sample

covers a smaller feature subspace compared to the true feature

subspace that can be covered by all the activity labeled samples

in the target domain. Due to this smaller probability, AR model

fails to detect correct activity class for many instances. The

class probabilities of our AR model is computed as follows.

P (yi|x) = 1

1 + exp(Af(x) +B)
(6)

where f(x) denotes the signed distance of the input feature

vector to the hyperplane. The parameters, A and B are esti-

mated using maximum likelihood estimation from the labeled

training activity instances during the training period of the

classifier.

Our DSAE implicitly reduces the distribution distances

between source and target domain, therefore we use both

source and target domain classifier to infer activities. We

propose a scoring function that combines the source and target

domain classifiers’ inference knowledge and helps overcome

the biased probability estimates. Our novelty detector helps

determine new activities in the target domain and also helps

formulating our fusion function. Our fusion function is formu-

lated as follows.

φ(y|x) =

⎧⎪⎨
⎪⎩
Ps(y|x) + Pd(y|x), if (yd = yr)

max(Ps(y|x), Pd(y|x)), else if (ys = yd)

Ps(y|x)× Pr(y|x)× Pd(y|x), otherwise

In case of new activities detected by novelty detector, we

define the following fusion function.

φ(y|x) =
{
Pr(y|x) + Pd(y|x), if (yd = yr)

max(Pd(y|x), Pr(y|x)), otherwise

where Ps(y|x), Pd(y|x) and Pr(y|x) represent source

trained classifier probability, target domain deep feature

trained classifier probability and raw feature trained classifier

probability, respectively. yd, yr and ys denotes the output

class of ’Source AR’, ’Target Deep AR’ and ’Target Raw

AR’ models predicted classes respectively. Feature encoding

process does not minimize data distributions explicitly. Hence,

novelty detector may also falsely classify few existing activity

samples as new activity or vice versa. We overcome this

challenge by adding Pr and Pd together in both existing or

new activity detection process and this help improving the

prediction probability even though they have lower individual

probabilities. We multiply source, and target domain prediction

probabilities when all classifiers predict similar activity classes

because source AR model prediction probability is usually

much higher than that of target domain AR model. Upon

determining the combined probability using fusion model,

class-labels with the highest probability represents the activity

class and it is represented as follows.

y∗ = argmax
y

φ(y|x) (7)

V. EXPERIMENTAL EVALUATION

In this section, we discuss the details of our experiments.

A. DataSets Description

We validate our proposed activity recognition framework,

UnTran with three publicly available datasets traces. We use

accelerometer sensor signal traces from these datasets. The

dataset descriptions are discussed below.

i) Opportunity dataset (Opp) [34][35] contains naturalistic

17 activities of daily living (ADL) from four participants. The

activities include drinking, cleaning table, eating sandwich etc.

Data was recorded at 64 Hz for about 6 hours of recording

from 5 Inertial Measurement Unit (IMU) on the upper limbs

and torso comprising of 3D accelerometers, 3D gyroscope and

3D magnetic field sensor. We consider 10 activities and use

only accelerometer sensors data to evaluate our framework.

ii) WISDM Actitracker dataset (Wisdm) [36] contains 6

distinctive human activities including walking, jogging, sitting

etc. belongs to 29 users. Data was collected at 20 Hz using

a smartphone accelerometer sensor kept on front pants leg

pocket.

iii) Daily and Sports dataset (Das) [37] containing 19

activities performed naturally by 8 subjects. Data was collected

at 25 Hz sampling frequency. Each activity duration was

5 min for each subject. The activity set includes sitting,

playing basketball, cycling etc. Five motion tracker (MTx)

units were used to collect the activity dataset where each

MTx unit contains 3D accelerometer, 3D gyroscope, and 3D

magnetometer sensors. MTx units were placed on the torso,

right arm, left arm, right leg and left leg.

B. Baseline Methods

We compare our proposed UnTran framework with the

state-of-the-art transfer learning based classifiers such as

Transfer Component Analysis (TCA) [38], and Joint Distri-

bution Adaptation (JDA)[39].

C. Implementation Details

We implemented our framework using python based deep

learning platform, Tensorflow [40]. Accelerometer sensor data

was segmented into 128 samples frames, with 50% overlap

between successive frames. Frames were filtered with low-pass

median filter to remove noises. We extracted various statistical

time- and frequency-domain features, which were then fed into

the classifier in batches, with a batch size of 32. We kept

the frame length and batch size consistent across all datasets

and experiments. We implemented transfer learning baseline

methods, TCA with python and JDA using MATLAB. Our

DSAE comprised of four layers. In addition, a softmax layer

was added to encode the class labels in the source domain.

We used the first two layers of the source tuned network to
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Dataset Source Domain Target Domain
Opp 3 1
DAS 6 2

WISDM 21 8

TABLE I: Number of users in the source and target domain

build our classifier. We ran our UnTran framework on a server

equipped with four NVIDIA GTX 1080-Ti GPUs and 64 GB

memory with Intel Core i7-6850K processor.

D. Evaluation Methodology

We evaluated our UnTran framework with standard leave-

two-sample-out cross validation method [18]. We train the

target domain model with (n − 2) samples and rest of the

two samples are used to test against the trained model. We

repeat this process
(
n
2

)
times and report the average result.

E. Performance Metrics

We evaluated and compared the performance of our frame-

work based on the following metrics. i) Precision P =
( TP
TP+FP ), ii) Recall R = ( TP

TP+FN ), iii) F-1 Score = 2×P×R
P+R

and, iv) Accuracy = TP+TN
TP+TN+FP+FN , where TP, FP, TN, and

FN are the number of instances of true positive, false positive,

true negative and false negative, respectively.

F. Experimental Results

In this work, we partition each dataset into two groups and

each group contains distinct users. Table I shows the number

of users in the source and target domain for each of the

dataset. We randomly choose users to generate the source and

target domain. We evaluate the performance of our proposed

UnTran framework for the following settings i) Influence of

balanced classes (i.e., how UnTran performs if both the source

and target domains have same number of activities), and ii)
Influence of imbalanced classes (i.e., how UnTran performs if

target domain contains larger number of activities).

Fig. 4: UnTran performance on seen activities

G. Influence of Balanced Activities

In this experiment, both the source and target domain

contain equivalent number of activities but target domain

contains unseen activities too.

1) Seen Activities: We conduct this experiment to demon-

strate our frameworks’ efficacy while both source and target

domain contain similar activities. Our framework comprises of

supervised SVM model, therefore we encode label information

with only 2-3% labeled activity samples in the target domain.

We evaluated our framework with leave-two-sample-out cross-

validation technique as stated before. Fig. 4 represents our

framework’s performance on three datasets. We see that our

framework achieves F1 score of 0.82, 0.85, 0.98 for Opp,

Das and Wisdm dataset, respectively. Note that Opp dataset

achieves lower f1 score compared to other dataset due to the

larger data distributions difference which is caused by the

diverse set of activity classes and sensing biases. On the other

hand, Wisdm dataset shows higher F1 score because it contains

smaller number of similar type of activities (only six) hence

this dataset has less data distributions divergence.

2) Unseen Activities: In this settings, we evaluated our

model performance in the presence of new activities in the

target domain. We vary the number of new activities in

the target domain while maintaining the constraint of same

number of activities in both domain. We also study how the

performance of UnTran framework is affected by varying the

number of labeled data, in the target domain.

Varying amount of labeled data: To study this, we system-

atically varied the amount of labeled activity data in the target

domain and computed the average F1 score of our UnTran
framework. We varied the labeled data of our (n-2) activity

samples in the target domain and rest of the remaining two

samples were used to test the performance of our framework.

Percentage of labeled activity samples were chosen at random

from the (n-2) samples. We also varied the number of unseen

activities from one to five for OPP and DAS datasets and

one to three for WISDM dataset. We computed the average

and reported the results. In this case, the alternative classifier

(TCA, JDA) also undergoes the same techniques and is trained

with the equivalent amount of labeled training data in the target

domain.

Fig. 5 reports the average results of the varying amount

of labeled data while the source and target domain contains

equivalent number of activity classes. We notice that our

framework performance improves with the increase in the

labeled activity samples. Our framework shows reasonable

performance with only 20-30% of labeled samples compared

to TCA and JDA. In case of opportunistic dataset, the perfor-

mance is closer to JDA due to larger data distributions between

source and target. Fig. 5b shows that our model achieves a

performance gain of 12-15% because the wisdm dataset has a

lesser number of closely related unseen activities. Our feature

encoder was able to establish a better correlation among the

extracted features and activities. In the presence of a large

number of heterogeneous activities and diverse settings, our

framework achieved a performance gain 2-4%. Fig. 5a , and

5c reports the impact of activity and environmental setting

heterogeneities.

Varying the number of unseen activities: We evaluated

our models efficacy in the presence of varying number of
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(a) Opportunistic (b) Wisdm (c) Daily and Sports

Fig. 5: UnTran performance (Varying amount of labeled data) in presence of equivalent number of activities in both source

and target domain

(a) Opportunistic (b) Wisdm (c) Daily and Sports

Fig. 6: UnTran performance (Varying number of unseen activities) in presence of equivalent number of activities in the source

and target domain

unseen activities in the target domain. We varied the number

of unseen activities from one to A (number of activities) and

followed the same leave-two-samples-out cross validation. Our

framework performs reasonably well with 20-30% labeled

activity samples. Therefore, we use 30% labeled activity

samples to train our model in the target domain. Fig. 6

represents the experimental results for all three dataset. We

noticed that our models overall performance drops 5-12%

with the increasing number of unseen activities in the target

domain. On the other hand, our model achieves performance

gain of 10-13% compared to TCA and JDA because of the

capability of utilizing label information from the source to

the target domain. Both TCA and JDA minimizes the data

distribution divergence explicitly and when TCA model is

trained with the labeled data it performs similarly as JDA.

Hence, the performance of TCA and JDA are close to each

other. However, our framework shows supremacy due the

knowledge fusion across the source and target domain.

H. Influence of Imbalanced Activities

We examine the performance of our framework when target

domain contains both the existing source activities and the

new activities. Hence, in this setting, our target domain model

contains larger number of activity classes. Basically, we are in-

terested to see whether our framework is able to find and learn

any relationship from the existing activities and recognize new

activities in the target domain. Our DSAE model is trained

with five activities (five for opp and das, three for wisdm) in

the source domain. We used the first two layers to produce

common features in the target domain. Generated features are

then used to train SVM model in the target domain.

Varying labeled data: In this experiment, we vary the amount

of labeled activity samples to train the target domain AR

model. We choose (n-2) samples to train our ‘Target raw AR’

and ‘Target deep AR’ model and rest of the two samples

test against this trained model. Percentage of labeled data

of the (n-2) trained samples are chosen at random while

training the target domain AR model. We used 30% labeled

activity samples in this experiment. Further, we used leave-

two-class-out cross validation technique, our (A-2) activity

classes participated in the model training and rest of the

two new activity classes participate in the test phase. It is

worth noted that our target domain activity set contains all

the existing activities of the source domain, and in addition,

it also contains new activities.

Fig. 7 represents the performance of this experiment. We

observe that our framework achieves performance gain of 3-

5% for opportunistic and daily and sports dataset compared

to the standard state-of-the-art transfer learning classifier. Our

framework achieves 10-12% performance improvement on

wisdm dataset compared to other TCA and JDA. For wisdm

dataset (exercising activities), source domain contains three

activities (i.e., ‘Sitting’, ‘Standing’, ‘Walking’ and the target

domain contains one or more new activities like ‘Upstairs’,
‘Downstairs’ and ‘Jogging’. These new activities are closely

related with the source domain activities. For example, ‘Jog-
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(a) Opportunistic (b) Wisdm (c) Daily and Sports

Fig. 7: UnTran performance (Varying amount of labeled data) in presence of imbalance activities in the target domain

(a) Opportunistic (b) Wisdm (c) Daily and Sports

Fig. 8: UnTran performance (Varying the number of unseen classes) in presence of imbalance activities in the target domain

Fig. 9: UnTran performance on different layers

ging’ and ‘Walking’ have both hand and leg movements.

Therefore, our feature encoding model able to find more cor-

related features and establish a non-linear correlation among

the activities and help improve the performance of our AR

framework.

Varying the number of unseen activities: We extended

our previous experiment, by varying the number of unseen

activities in the target domain. In this setting, 30% annotated

activity samples were used to train the ‘Target raw AR’

and ‘Target deep AR’ model. Fig. 8 represents our models

performance in the presence of imbalance activities in the

target domain. We observed that the performance dropped

15-20% with the increasing number of unseen activities. Our

fusion framework incorrectly classifies a few number of new

activities as existing activities because our feature encoding

module encounters difficulties to generate distinct, separable

common feature space for these activity samples. From Fig. 8,

we notice that our framework achieve F1 score about 70%

on average even in the presence of a large number of new

activities in the target domain.

I. Performance Analysis of Deep Features

In this section, we examine, how our UnTran framework

performs while we use features from different layers. The

performance of our model is evaluated with a fixed number of

unseen activities in the target domain for all the three real-

world datasets. We use source trained classifiers’ different

layers to generate deep features in the target domain. Fig. 9

shows the leave-two-sample-out cross-validation result. Deep

neural network generates most generic features in the lower

layers and domain specific features in the upper layers. Fig. 9

reflects this characteristics. Note that the performance of our

model decreases as approaches the upper layer of the network.

Most generic features (Layer 1) are unable to distinguish

activities while most specific features (Layer 4) are unable

to generate a common feature space in the target domain.

Therefore, we choose the first two layers to generate features

and recognize activities in the target domain.

VI. DISCUSSION

Our proposed deep sparse autoencoder based transfer learn-

ing enabled activity recognition framework, UnTran addresses

a significant promising problem of unseen activity detection.

There are however additional issues that need to be investi-

gated.

Device and Sensor Diversity: We evaluated our frame-

work, with only using wearable accelerometer sensors data.

Though performance examination against three public datasets

implicitly attests efficacy of our framework against users,
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environment heterogeneities and sensing biasness. However,

additional investigations are required when activity signals are

collected through heterogeneous sensors (i.e., camera, PIR,

etc.) and devices (smartwatch, smartnecklace, etc.).

Explicit Structural Patterns Mapping: Deep sparse au-

toencoder learns inherent latent features and is able to establish

a correlation among the activities automatically. Transferring

first few layers from the source to target domain helps generate

common features space. We assume that features generated

by the source trained layer implicitly reduces domain diver-

gence automatically. However, for a large number of unseen

and non-correlated activities, this implicit domain divergence

minimization may be minimal and the performance of our

framework degrades. To further improve the performance of

our UnTran, a potential research direction, and our ongoing

work is to incorporate structural correlation mapping among

the intra- and inter-activities between the source and target

domain.

Annotation Effort: We utilize source domain activity labels

in our UnTran fusion AR framework to reduce labeled data in

the target domain. However, we assume that users provide

a few annotated samples in the target domain at random.

To improve the performance and reduce the annotation costs

associated with the number of activity samples can be further

studied. One possible future direction is to employ active-

learning based annotation technique.

VII. CONCLUSION

Human behavior and activity recognition in the smart en-

vironment have versatile application in healthcare, sports an-

alytics, physical and cybersecurity domains. In this paper, we

propose transfer learning enabled activity recognition approach

that helps to infer new activities in the new environment. We

envision that future smart environment will be very diverse

in terms of users activity patterns, new sensing devices and

their communication mediums. One of the most challenging

task of activity learning is to recognize new activities in the

target environment. Therefore, we advocate a novel activity

recognition framework, UnTran to learn and recognize new

activities in the target domain. We exploit the adaptability and

scalability of deep sparse autoencoder in the target domain and

fuse the deep and raw activity models both from source and

target domain to deal with limited training samples. We attest

the efficacy of our proposed UnTran framework with real data

traces and compare its performance with several state-of-the-

art transfer learning methods. We believe that our proposed

adaptable and scalable activity recognition framework, UnTran

will help advance human behavior and activity inference in

large-scale diverse environments.
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