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Occupancy detection helps enable various emerging smart environment applications ranging from opportunistic HVAC (heating,
ventilation, and air-conditioning) control, effective meeting management, healthy social gathering, and public event planning and
organization. Ubiquitous availability of smartphones and wearable sensors with the users for almost 24 hours helps revitalize
a multitude of novel applications. -e inbuilt microphone sensor in smartphones plays as an inevitable enabler to help detect the
number of people conversing with each other in an event or gathering. A large number of other sensors such as accelerometer and
gyroscope help count the number of people based on other signals such as locomotive motion. In this work, we propose
multimodal data fusion and deep learning approach relying on the smartphone’s microphone and accelerometer sensors to
estimate occupancy. We first demonstrate a novel speaker estimation algorithm for people counting and extend the proposed
model using deep nets for handling large-scale fluid scenarios with unlabeled acoustic signals. We augment our occupancy
detection model with a magnetometer-dependent fingerprinting-based localization scheme to assimilate the volume of location-
specific gathering. We also propose crowdsourcing techniques to annotate the semantic location of the occupant. We evaluate our
approach in different contexts: conversational, silence, and mixed scenarios in the presence of 10 people. Our experimental results
on real-life data traces in natural settings show that our cross-modal approach can achieve approximately 0.53 error count
distance for occupancy detection accuracy on average.

1. Introduction

Localized commercial (university, office, mall, cineplex, res-
taurant, etc.) and residential (apartment, home, etc.) building
occupancy detection and estimation at room/zone-level gran-
ularity in real time can provide meaningful insights into many
smart environment applications, such as green building, social
gathering, and event management. Smartphone-based partic-
ipatory and citizen sensing applications have adhered to the
promise of building such applications by utilizing various
context-sensing sensors on board. Different sensors can be
exploited individually or in tandem to build a variety of such
novel applications to satisfy the myriad requirements of dif-
fering smart environment applications. For example, potential
benefit from microphone sensor-based application is the as-
sessment of social interaction and active engagement among
a group of people by leveraging their conversational contents

[1] and speaker identification and characterization of social
settings [2–4]. To enumerate the number of people in a con-
versational episode, such as during a social gathering, in-
teractive lecture session, or in a restaurant or shopping mall
environment, various speaker-counting paradigms have been
explored [5–8]. Most of the recent studies which focus on
conversational data features to extract high-level occupancy
information assume that all of the users need to take turns at
some point. While this specific scenario is feasible, it is not
ideal. To tackle this ideal situation, researchers have proposed
using arrays of microphone sensors, video cameras, or motion
sensors for identifying microscopic occupancy information in
real time [9–12] which is obtrusive in nature. We envision to
move one step further by considering a more natural envi-
ronment where people may spontaneously participate or ab-
stain from any conversational phenomenon. We posit to
augment the smartphone-based locomotive sensing model in
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the absence of any conversational episode along with acoustic
sensing-based audio inference model to precisely capture the
characteristic of a natural environment and accurately estimate
the occupancy count. To further pinpoint the occupancy, we
integrate the smartphone’s magnetometer sensor-based
location-sensing model. In pursuit of these goals, we design
a model which opportunistically exploits both the audio and
motion data, respectively, from the smartphone’s microphone
and accelerometer sensor to infer the number of people present
in a gathering and their semantic location information as
supplemented by themagnetometer sensor on the smartphone.
We also introduce a crowdsourcing model to reduce the effort
for obtaining semantic location information at scale.

In particular, we propose a zero-hassle ambient and
infrastructure-less mobile sensing (a.k.a. smartphone) based
approach by exploiting only the smartphone’s sensors to
provide significantly greater visibility on real-time occu-
pancy and its semantic location [13, 14].-e key challenge in
this case is to effectively estimate the number of people in
a crowded and noncrowded environment either in the
presence of any conversational data or not. Such a hybrid
sensing approach could potentially furnish more fine-
grained occupancy profiling to better serve many partici-
patory sensing applications while saving smartphones’
battery power by advocating a distributed sensing strategy.
Main contributions of this paper are summarized as follows:

(i) We propose an online acoustic sensing-based linear
time adaptive people-counting algorithm based on
real-life conversational data which promotes a uni-
fied strategy of considering both overlapped and
nonoverlapped conversational data in a natural en-
vironment. We propose to select opportunistically
the minimal number of microphone sensors which
can substantially reduce the energy consumption of
smartphones. Our proposed people-counting algo-
rithm can dynamically select the length of the audio
segment compared to the other existing work [6].

(ii) We also propose an offline data-driven people-
counting algorithm which uses the deep neural
network-based clustering approach. We optimize the
deep network by learning the feature space and cluster
membership jointly. We allocate the cluster dynam-
ically to determine the number of people present in
a conversation. Our proposed model dynamically
provides beneficial frames to the occupancy-counting
module. We perform extensive evaluation in the
presence of 10 domestic users to validate our model
performance.

(iii) Although the acoustic sensing-based approach holds
great promises in inferring the number of occupants,
it fails in the absence of any conversational data.
-erefore, we propose the augment motion sensing-
based counting strategy with our acoustic sensing-
based people-counting algorithm which works on
extreme modality of either of the data sources, be it
acoustic or locomotive.

(iv) We design a magnetometer sensor-based localization
technique at zone/room-level granularity to infer the

location of a conversing group. We propose a novel
crowdsourcing model to map the magnetic signature
of different locations and collect a large number of
annotated location information to tag the occupancy
with its semantic location information [13].

2. Related Work

We review the most relevant literatures on the occupancy in-
ference problem in the context of conversational sensing, lo-
calization, and speaker estimationwhich are smartphone-based.

2.1. Speaker Sensing. Occupancy estimation is an important
enabler of various applications such as HVAC (heating, ven-
tilation, and air-conditioning) controlling [12, 15–17] and
social interaction [18]. For example, Nikdel et al. [15] quantified
the energy consumption using building occupancy in-
formation. Aftab et al. [12] predicted occupancy from video
sensing using object-tracking techniques from a scene and
controlling the HVAC system in real time. In addition, various
speaker-sensing algorithms have been proposed in the recent
past using acoustic sensing [19, 20]. Valle [19] proposed
a hybrid occupancy estimation model by combining the
Gaussian mixture model (GMM) and hidden Markov model
(HMM). A large number of previous works have used the
smartphones’ microphone to opportunistically analyze audio
for context characterization. For example, SpeakerSense [4]
performs speaker identification and SoundSense [21] classifies
sounds from macro- to microcontexts. -ey have often in
common employing the supervised speaker-learning tech-
niques. In contrast, our model’s occupancy-counting process is
entirely unsupervised. Our proposed model anonymously
estimates the number of people from the smartphones’ acoustic
cum locomotive sensing model where we have employed
unsupervised learning techniques to cluster different forms of
acoustic signatures. For example, Ofoegbu et al. [22] have built
a model from mean and covariance matrices of the linear
predictive cepstral coefficient (LPCC) of voice segments in
conversations and used the Mahalanobis distance to determine
whether two models belong to the same or different speakers.
Iyer et al. [23] have performed speaker clustering using distance
of the feature vectors extracted from different speakers and
finally applied the modified k-means algorithm with distance
metric data. However, their experiments for occupant esti-
mation were on telephonic conversational data, where multiple
participants were present, and voices were frequently over-
lapped and intertwined with the noisy environment. Sell et al.
[20] predicted the number of occupants present using acoustic
signals by employing the agglomerative hierarchical clustering
(AHC) algorithm. Our proposed model performs speaker
counting without any predefined environmental setup and
collects data from natural conversation. Our proposed speaker-
counting algorithm is close to [24] and [6] where smartphone-
based speaker counting has been proposed in a controlled
scenario where all the participants spoke actively. Xu et al. [6]
used a fixed-length audio segment (3 sec) where each seg-
ment corresponds to an individual, but we performed this
audio segmentation dynamically to increase the accuracy of
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occupancy inference. Xu et al. [6] also classified a few segments
as undetermined, but our system never discards segments as
undetermined which is achieved only through employing
dynamic segmentation. -erefore, our proposed audio-based
occupancy inference model tackles a richer problem, where
none of the speakers are discarded for handling the compu-
tational challenges. Crowd++ [6] was proposed to combine
pitch with MFCC to compute the number of people with an
average error distance of 1.5 speakers. On the other hand, our
MFCC-based proposed model improved the average error
distance by a factor of two (0.76 speakers) [13, 14].

However, the major disadvantage of the MFCC-based
acoustic approach is that the MFCC discards a lot of in-
formation present in the speech sound. -erefore, we need
to develop a robust system which could potentially capture
discriminative speaker information and establish correlation
between features. Recently, deep learning methods become
the state of the art in many acoustic applications such as
object recognition [25] and speaker recognition [26]. In
particular, deep learning algorithm helps design robust
audio-related acoustic signal modeling like speech recog-
nition [27] and phone recognition [28] with better accuracy.
-e major reason behind the popularity of the deep model is
the capability of learning features from a large data set
automatically and easing the rely on handcrafted features.
Deep models are capable of learning robust features from
both labeled and unlabeled data. Among the different deep
learning methods, the deep neural network (DNN) has been
recently shown to be effective in speech recognition appli-
cations [29, 30]. Milner and Hain [31] concatenated features
from all the audio channels and helped train the DNN (deep
neural network) model with this mixed feature to predict the
number of speakers using audio signals. Mohamed [32] used
the DNN to recognize phone from the acoustic data and
showed that DNN performance is superior than that of the
Gaussian mixture model (GMM). However, the features
were learned from the labeled information provided during
the training phase. Unsupervised feature learning has also
been investigated in [33] where the convolutional deep belief
network (CDBN) has been applied to audio data for gender
detection, phone recognition, and speech identification
applications. Deep learning-based clustering techniques
have also been employed in [34, 35], where convolutional
neural network- (CNN-) generated features were fed into the
hierarchical clustering methods to cluster nonoverlapped
utterances. Xie [35] proposed offline DNN-based clustering
techniques and used the k-means clustering algorithm to
initialize the cluster centroids. However, our DNN-based
method automatically helps cluster the speakers and train
the models in an unsupervised fashion. Our model dy-
namically determines the total number of clusters present in
the given input audio stream and employs the offline DNN-
based clustering strategy to help achieve an average error
count distance of ≈0.53 which is 30% higher than that of our
MFCC-based iterative speaker-counting approach.

2.2. Indoor Localization. Wang et al. [36] proposed an
unsupervised indoor localization approach exploiting

environmental identifiable artifacts and specific signatures
on single or multiple sensing dimensions using smart-
phones’ different sensor readings (mainly from acceler-
ometer, compass, gyroscope, and WiFi APs). Track [37]
deployed reusable beacons around the place of an event and
utilized the location of the beacons in conjunction with the
smartphone contact list and applied crowdsourcing tech-
niques to infer users’ location. Chung et al. [38] measured
geomagnetic field in a way which is spatially varying but
temporally stable, using an array of e-compasses to infer
location. However, they used a bunch of sensors or sensor
arrays for location detection, whereas our model only used
the smartphones’ magnetometer sensor to infer semantic
location information of a gathering at zone/room-level
granularity. Subbu et al. [39] used magnetic fingerprints
with dynamic time-warping algorithm to predict location
information with 92% accuracy. Our model used the
standard random forest algorithm and achieved 98% ac-
curacy to detect high-level semantic location information of
any gathering. IndoorAtlas location technology [40] utilized
anomalies of ambient magnetic fields for indoor positioning.
-is platform provides the functionality for participatory
sensing where the crowd can contribute by war-driving
magnetic signatures of an unexplored location.

3. Overall System Architecture

We envision developing a minimally invasive cost-free ro-
bust mobile system for counting the number of people
present at any time in any environment and enlighten their
semantic location information. Our model boosts these
capabilities by employing smartphones’ magnetometer,
microphone, and accelerometer sensors. Our system, as
shown in Figure 1, comprises two subsystems, one deployed
on the smartphone and the other in the server. Using only
acoustic sensing, it is not always possible to predict the
correct number of the occupants present in a specific lo-
cation as some people get involved in a conversation, while
others remain silent. For example, in a classroom scenario,
while professor lectures, some of the students participate,
but the majority of the students remain silent. Sensed data
are stored in a data sink (sink) for posterior analysis in the
mobile part of our proposed architecture consisting of an
accelerometer and a magnetometer. In our model, we
propose to utilize microphone sensor-based acoustic sensing
in conjunction with accelerometer sensor-based locomotive
sensing for occupancy detection. For this joint collaborative
sensing, acoustic sensed data are being fed to the filter to
collect acoustic fingerprint (AFP), consisting of content-
based audio. -e AFPs being collected from all smartphones
are sent to the “estimate proximity” module residing on the
server which helps distinguish the audio signals in vicinity
and approximate the inclusion of a group of smartphones to
form a single clique. Finally, the “optimum node” module
elects the clique leader (the most informative smartphone)
to record the audio data and notifies the condition of de-
activation to the other smartphones from capturing the
duplicate audio signal. It also helps in sorting the smart-
phone list based on their audio signal strength which is
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eventually utilized by the locomotive “signature collection”
module to opportunistically check on and trigger the ac-
celerometer sensor on the smartphones [41]. �e server-side
architecture consists of two main logical subcomponents:
(i) occupancy context model and (ii) location context model.
�ese models together form the inference engine of our
proposed semantic location-sensitive occupancy detection
system.

3.1. Occupancy Context Model. It has two submodules:
acoustic context model and locomotive context model.

3.1.1. Acoustic Context Model (ACM). Our acoustic context
model has two independent inference modules: (i) iterative
speaker count (I-SC) and (ii) deep neural network- (DNN-)
enabled speaker count (DNN-SC). We employ these
modules for inferring occupancy.

(i) Iterative speaker count (I-SC): this module serves as
the core processor for occupancy counting. It takes
the raw audio signal as input and generates the
MFCC as features and then measures the similarities
between the audio frames and segments. Based on
these similarity measures, it decides whether those
speech segments are generated from distinct or the
same speaker. It keeps track of all the segments and
their identities with respect to a speci�c person and
�nally helps count the total number of existing
speakers during a conversational episode.

(ii) Deep neural network- (DNN-) enabled speaker
count (DNN-SC): it accepts raw audio signals and
produces features such as MFCC, ZCR, and so on
and deploys the deep neural network (DNN) to infer
occupancy.

3.1.2. Locomotive Context Model (LCM). It comprises (i)
signature collection, (ii) feature extraction, and (iii) occu-
pancy estimation modules. �e signature collection module
receives the total number of people count from the ACM
module and the sorted smartphone list from the optimum
module to opportunistically select a single smartphone’s
microphone sensor. Based on these two inputs, the LCM
module makes decision on which smartphones’ sensors are
needed for further occupancy estimation. �e feature ex-
traction module calculates the accelerometer sensor mag-
nitude and feeds that into the occupancy estimation module,
which infers binary occupancy for each smartphone and
�nally helps counting the total number of people present in
a conversational cum silent environment.

3.2. Location Context Model. Our location context model
consists of two submodules: (i) signature extraction and
(ii) location estimation. In the signature extraction phase, we
compute the feature vectors from smartphone’s magne-
tometer sensor data. In the location estimation phase, we use
those feature sets for cross-validation to construct training
and testing sets. After producing training and testing sets, we
apply machine learning techniques to infer location.
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Figure 1: Architectural overview of our model.
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4. Design Methodology

In this section, we describe the details of our model design
framework. We present an acoustic augmented locomotive
sensing model for counting the number of people present in
a conversing, nonconversing natural environment. We posit
a magnetometer sensor-based �ngerprinting methodology
to semantically localize the gathering.

4.1. Occupancy Estimation Using Acoustic Signature. We
compute the total number of speakers present in a conver-
sation using two methods: (i) iterative speaker counting (I-SC)
and (ii) deep neural network- (DNN-) enabled speaker counting
(DNN-SC). We discuss the details of our approach below.

4.1.1. Iterative Speaker Count (I-SC). �is module has three
submodules: (i) preprocessing, (ii) feature extraction, and
(iii) occupancy estimation. Figure 2 shows the stacked
pipeline of our iterative speaker count module.

(1) Preprocessing: this module is the most trivial phase
for acoustic signal processing. �is module helps to
perform the �ltering and select the audio segment
length dynamically. It �nally helps remove all the
noises and silences and produce smooth conversa-
tional data which are later passed to the feature
extraction module.

(2) Feature extraction: this is the main basis for extracting
all types of features which is utilized in the speaker
estimation module. �is module takes conversational
samples and processes them through a series of data
cleaning and feature extraction steps. It helps making
frames from samples to calculate various features like
MFCC, pitch, and so on. �ese features are later used
by the speaker estimation module.

(3) Speaker estimation: in this section, we describe our
iterative occupancy estimation using our proposed
acoustic sensing model. We look into the speci�c
cases where all the occupants have been conversing.
We �rst attempted to calculate the number of
speakers engaged and consider three di�erent phases
to compute the number of personnel present. First,
we propose to create dynamic segments from the raw
audio data and assume that each segment belongs to
an individual person. We attempt to detect every
speaker change point in the entire audio signal
spectrum and assign one segment to one person to
increase the counting performance of our occupancy
detection algorithm. A speaker change point depicts
the stopping point of one speaker and the starting
point of another speaker. Speaker change point
detection algorithms have been investigated exten-
sively [42–44]; however, it is a complex process to
detect the speaker change point in conversational
speech because utterance lengths can be extremely
short, speaker changes may occur frequently, over-
laps between the speakers may happen, and sur-
rounding environment can be noisy. We create

segments from the raw audio dynamically. Details of
our preprocessing are discussed in Section 5.4.1.

Assume that the entire audio signal has N segments
S1, S2, . . . , SN{ } and consider a segment which contains m
frames, and each segment consists of frames F1, F2, . . . , Fm{ }.
We calculated the MFCC for each frame where each segment
has correspondingMFCC feature vectors as M1,M2, . . . ,Mm{ }.
We also computed the pitch for each segment to apprehend
gender in the conversational data. Segment pitches are rep-
resented as P1, P2, . . . , Pm{ }, where the average pitch for male
falls between 100 and 146Hz, whereas the female pitch is
within 188 to 221Hz, as demonstrated in [45]. Segments which
fall within themale frequency are marked as male and similarly
for female. �ese two sets are then passed to our proposed
people-counting heuristic algorithm. Before passing these male
and female segments for checking similarity measures, we
calculated intracosine angle of each segment to sort out both
male and female segments. Next, we have checked the simi-
larity among intersegments whether it falls within our pre-
de�ned threshold, θth, or not. If these segments have been
similar, then we havemerged them tomake a new segment and
continued to check for the next segmentwith this newly created
segment. If these segments have been dissimilar, then we have
moved forward and picked another segment to check the
similarity with the next one. �e pseudocode of our proposed
people-counting heuristic has been shown in Algorithm 1.

4.2. Deep Neural Network- (DNN-) Enabled Speaker Count
(DNN-SC). Our deep neural network-based speaker count
(DNN-SC)model comprises four submodules: (i) preprocessing,
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Figure 2: Processing pipeline of iterative speaker count (I-SC).

Mobile Information Systems 5



(ii) feature extraction, (iii) gender detection, and (iv) DNN
model. In the preprocessing module, raw audio signals are
segmented dynamically based on the con�dence score of
segments where each segment contains one speaker’s voice
information. Detailed segmentation is discussed in Section
5.4.1. Frames are generated from these raw audio segments, and
selected frames are admitted into the feature extractionmodule
which helps extract mel-frequency cepstral coe�cients
(MFCCs), zero crossing rate (ZCR), and spectral �ux (SF). �e
DNN establishes nonlinear correlation among these features.
In the gender detection module, male and female segments are
di�erentiated using pitch information calculated with the help
of the YIN [46] algorithm. Gender-speci�c audio features are
passed into the deep neural network to count the total number
of speakers present in the audio conversation data. Figure 3
shows ourDNN-SC architecture. Next, we discuss the details of
our frame selection algorithm and DNN-based speaker-
counting algorithm.

4.2.1. Frame Selection Algorithm. Frames are created from
the raw audio segments which may have important human
voice information, silence, white noise, and so on. Since we
are interested only in the voice information, therefore, we
need to discard unwanted frames to improve the perfor-
mance of our people-counting algorithm. �ese unwanted
(unvoiced, silence, etc.) frames can occur at any time due to
the di�erent positions of the phone or contexts of the en-
vironment. Silence or unvoiced frames have low energy
levels. Energy is obtained by calculating root mean square
(RMS) values of the frames. Spectral entropy is also a good
indicator of unwanted audio frames. White noise or silence
has a �at spectrum and has high entropy, whereas low
entropy represents human voice information. Entropy of the
frame is obtained by calculating the normalized fast Fourier
transform (FFT) spectrum of the frame. We represent the
spectral entropy mathematically as follows:

hf � −∑
m

j�1
pjlogpj. (1)

Our frame selection algorithm selects frames based on
the RMS and entropy values calculated above. Voiced frames
have high RMS values when the recorded audio sample
sound is high. However, the sound of the audio samples may
be low due to the microphone or phone’s position. In this
case, we use entropy to admit or discard a frame. Since we
are only interested in voiced frames, we focus on increasing

Input: set of segments, S � S1, S2, . . . , SN{ }, total number of segments � N
Output: Number of distinct speakers, Ns
Fs � { } ▷ Selected empty frame set
for i from 1 : N do
mi �Compute_MFCC(Si) ▷ Compute MFCC vectors
Insert(M, mi) ▷ Insert mi into MFCC set M
Sort(M) ▷ Sort MFCC set and keep sorted MFCC set into the same set M
PS � { } ▷ Initialize Person Set which contains similar person in sets PSj
for i from 1 : N do
for j from (i + 1) : N do
θ � Cosine_Similarity(Mi, Mj)
if (θ ≤ θth) then
Insert(PSi, Mj)
else
i � j
Insert(PS, PSi) ▷ PS denotes Person Set
NS � Count_Elements(PS)
return NS

ALGORITHM 1: People count (S, N).
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the true positive. -erefore, we use two thresholds, RMS
threshold (rth) and entropy threshold (hth) to admit or
discard a frame. -ese thresholds are determined based on
the empirical analysis of the given acoustic signals. We admit
a frame when either the RMS value crosses the threshold (rth)
or the entropy hf value is lower than the threshold (hth).-ese
threshold values depend on the phone, microphone, and
context. We empirically determine this threshold from the
collected audio data. -e complete procedure is summarized
in Algorithm 2.

4.2.2. DNN-Based Speaker Counting. We construct four
layers of the deep neural network (DNN) [29] to cluster the
entire audio signal. Figure 4 shows the building block of our
DNNnetwork. DNN is a feed-forward artificial neural network
that has one or more hidden layers between the input and the
output layers. Restricted Boltzmann machine (RBM) is the
basic building block of a DNN, and each RBM is stacked one
after another to form the network. An RBM is a type ofMarkov
random field (MRF) and has one visible layer and one output
layer. Each layer is composed of binary stochastic units. All
units from the visible layer are connected to the hidden layer
units, but there are no visible-visible or hidden-hidden unit
connections. Each hidden unit’s output depends on all of the
visible units and the corresponding connection weights and
a bias factor. -e probability distribution function is defined
using these weights and biases of the units and the joint
distribution of the visible (v) and hidden (h) state vectors.
-is is defined as an energy function that is represented as
follows:

E(v, h; θ) � −􏽘

Nv

i�1
􏽘

Nh

j�1
wijvihj − 􏽘

Nv

i�1
bivi − 􏽘

Nh

j�1
ajhj, (2)

where Nv and Nh represent the number of visible and
hidden units, respectively, θ � (w, b, a) is the model pa-
rameter, w is the weight, and a and b are the biases of the
visible and hidden units, respectively. Each RBM helps
construct hidden units from the given visible units and
reconstruct the visible units from the constructed hidden
units. -e visible vector probability is defined as follows:

p(v|θ) �
􏽐he−E(v,h)

􏽐u􏽐he−E(v,h)
, (3)

-e conditional distributions of the visible and hidden
layers are defined as follows:

p vi � 1|h; θ( 􏼁 � σ 􏽘

Nh

j�1
wijhj + bi

⎛⎝ ⎞⎠,

p hj � 1|v; θ􏼐 􏼑 � σ 􏽘

Nv

i�1
wijvi + aj

⎛⎝ ⎞⎠.

(4)

Our first layer, RBMs’ visible units, is constructed using
Gaussian visible units [47] that use real-valued features
which are extracted from the audio signal. -e remaining
RBM layers employ rectified linear unit (ReLU) activation
functions to produce the binary output. -is DNN model
helps determine the total number of speakers present in
a conversation in two phases: (i) preclustering and (ii)
speaker counting, where the former is responsible for pre-
clustering the audio segments and the latter designates the
appropriate number of speakers or clusters present in the
provided audio data.

(1) Preclustering. -is module combines consecutive seg-
ments that are from the same speaker. We train the DNN
network in a greedy layerwise basis before uniting the
smaller segments into a larger one. -e unlabeled audio data
are leveraged to train the model using the contrastive di-
vergence (CD) algorithm [48] which calculates the gradient
and updates the model weights as follows:

Δwij �〈vihj〉data−〈vihj〉1, (5)

where vihjdata is the expectation of the training data and vihj1
is the expectation calculated from the distribution of samples
using the Gibbs sampling method [47].

Raw audio features—MFCC, zero crossing rate (ZCR),
and spectral flux—are placed side by side to form a feature
vector from a raw audio segment. -ese feature vectors are
used to train each RBM one after another in a greedy
layerwise fashion to find the correlation between features and
distinct vocal tract characteristics of the speaker. Once pre-
training is completed, each raw audio segment produces
a binary feature vector which is then used to form clusters
using the forward clustering method. Assuming that the
binary feature vector set for the audio segment is
fS1

, fS2
, . . . , fSN

􏽮 􏽯, where N is the number of segments
present in the audio signal, the raw audio segment set is

Input: Frames, F � F1, F2, . . . , Fm􏼈 􏼉

Output: Selected frames, Fs
Fs � { } ▷ Selected empty frame set
for i← 1; i< |F|; i← i + 1 do
ri← compute_rms(Fi) ▷ Calculate RMS value of a given frame
hi← compute_entropy(Fi) ▷ Calculate entropy using (1)
if (ri ≤ rth) or (hi ≥ hth) then
Insert(Fs, Fi) ▷ Add the selected frame Fi to the set Fs
return Fs

ALGORITHM 2: Frame selection (F).
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represented as S1, S2, . . . , SN{ }. In the forward clustering
method, we pick the �rst segment’s feature vector fS1 and
calculate the cosine distance against fS2. If the distance is
smaller than the similarity threshold δs, we merge these two
raw segments into a new raw audio segment S1 and compute
the cluster centroid C1 by taking an average of these two
segments’ feature vectors. We then calculate raw features
from the merged segment again and formulate the binary
feature vector with the help of the pretrained network. Next,
we compare this newly computed feature vector fS1 with fS3.
If these two are similar, we then repeat merging and updating
the centroid. Otherwise, we begin comparingfS3 withfS4 and
form a new centroid. In this forward pass, we merge con-
secutive similar speaker audio segments to form a bigger
segment since the smaller voice segments have a high like-
lihood of dissipating from the same speaker. �e longer
segments help increase the likelihood of distinguishing the
di�erent speakers and thus help increase the clustering
performance. After this forward clustering, we merge the
segment set SC1

, SC2
, . . . , SCk{ } and their corresponding

cluster centroid set C1, C2, . . . , Ck{ } of the inferred speakers,
where k represents the number of newly inferred speakers. In
this preclustering technique, we have both longer (combined)
and shorter segments as S1, S2, . . . , Sk+m{ }, where k is the
number of smaller nonmerged segments. We compute the
pitch for each of these longer segments, where each centroid is
associated with pitch information. We assume that the pitch
set is PS1, PS2, . . . , PSk{ } which helps determine the gender of
the speaker. Figure 5 shows the schematic diagram of our
preclustering method.

(2) Speaker Counting. We count the number of people from
the preclustered segments in this step. We employ the DNN
for this purpose, but it seeks ground truth label information
to compute the gradient of the network parameters. Since we
have no label information, we postulate the previously
computed centroid set as initial labels for this network. We
start with segment Si and pass this through the network to
generate the feature vector Zi � z1, z2, . . . , zli, where l is the
total number of output units. �e output of each unit, l, is
calculated as follows:

zl �
1

1 + e bl+∑j
xjwj,l( )

, (6)

where xj is the output of the ith unit from the previous layer.
We then compute the cosine distance against all the

centroids which have similar gender information as with
the current segment. If the cosine similarity distance (δ) is
less than the empirically calculated threshold, δs, we then
compute the new mean centroid Ci across all the similar
centroids. �is process is repeated for each of the segments.
If any segment has the cosine similarity distance D(Ci, Sj),
greater than the empirically determined intraspeaker dis-
tance threshold, δs, and less than the interspeaker distance
threshold, δd, we discard that segment. While a segment’s
cosine similarity distance is higher than the threshold, δs,
we assign that feature vector as a new centroid in the
network. Since these intra- and interspeaker cosine dis-
tance thresholds depend on the microphone sensitivity, we
determine it from our collected samples such that it reduces
the total number of false positives. We validate our model
by setting δs � 16 and δd � 31. To optimize the network
parameters, θ � (w, b), we de�ne our network objective
function, J(θ), based on the cosine similarity measure as
follows:

J(θ) �
1

(m + k)
∑
k

j�1
1 · δ ≤ δs{ } cos−1

Zi · Cj
Zi
∣∣∣∣
∣∣∣∣ Cj
∣∣∣∣∣
∣∣∣∣∣

 , (7)

where 1 · δ ≤ δs{ } is the indicator function where it infers
one when the cosine distance δ < δs or δ > δs, otherwise
infers zero. We jointly optimize the network parameter θ
and cluster centroids using the stochastic gradient de-
scent (SGD) algorithm. �e gradient of the objective
function, J, with respect to each unit (zl) of Zi is calculated
as follows:

δJ(θ)
δ zl( )

�
−1�����
1−A2

√ × B, (8)

where A�Zi ·Cj/|Zi| · |Cj| and B�zl/|Zi| · |Cj|−A ·cl/|Cj|2.
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Figure 4: RBM structure used in speaker counting.
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Similarly, we calculate the gradient of the objective
function, J, with respect to each component (cl) of the
centroid, Cj. �e derivative is represented as follows:

δJ(θ)
δ cl( )

�
−1�����
1−A2

√ ×D, (9)

where D � cl/|Zi| · |Cj|−A · zl/|Zi|
2. �ese gradients are

passed down to our DNN network and used the standard
backpropagation algorithm to optimize networks weights,
w, and bias, b. Once the training of our DNN is complete, the
total number of clusters represent the total number of
speakers present in a conversation.

4.3.Occupancy EstimationUsingAccelerometer Signature. In
this section, we discuss our locomotive sensing model in the
absence of any conversational data or in a mixed environment
where a group of people may talk and others listen silently. If
a smartphone is stationary for a signi�cant amount of time, the
on-board accelerometer sensor produces a steady-state signa-
ture which has no variation or spikes in terms of signal am-
plitude, whereas if there is a movement, it generates a spike or
corresponds to a steady-state signal alteration. To detect these
abrupt changes in locomotive signal amplitude, we propose to
use the change point detection-based technique [49].

Change point detection helps to �nd the abrupt variation
in the movement data stream. Our motivation in this work is
to use the change point to �nd the straymovements by �nding
abrupt changes in the accelerometer signals. �ese changes
help inferring binary people counting (whether people are
present or not). We investigated the o¬ine Bayesian change
point [49] detection-based algorithm for inferring the oc-
cupant’s presence in O(n2). Let the observed accelerometer
data sequence be x1:N � x1, x2, x3, . . . , xN{ }, where N de-
notes the number of data points over timeT.We partition this
data sequence into nonoverlapping regions based on run
length [50]. �e length of each partition or time since the last

change point occurred is de�ned as “run length”. If there are
m partitions, then the partition data set is denoted as
ρ1, ρ2, ρ3, . . . , ρm{ }. We also denote xti:tj as the contiguous set
of observations between times ti and tj inclusively. If the
length of the current run at time m is denoted by rm, then it
can be de�ned as follows:

rm �
0 if change point occurs at (m− 1).
rm−1 + 1 otherwise

{

(10)

Change points occur at discrete time points. �e con-
ditional probability that a change point occurs at time tk
after the last change point at time tk−1 is

π tm tm−1
∣∣∣∣( ) � g tm − tm−1( ), where 0<m− 1< n,

π tm( ) � ∑
m−1

j�0
g tm − tj( )π tm−1( ),

(11)

where π(tm) is the prior probability of a change point at time
tm and depends on the probability distribution of the ob-
served data sequence and the preceding change point.

Change point detection algorithm computes predictive
distribution π(xn+1|xn) on a given run length rm taking the
integration over the posterior distribution π(rn|x1:n) which
is computed using the following equation:

π rn x1:n
∣∣∣∣( ) �

π rn, x1 : n( )
π x1:n( )

. (12)

It also �nds out the joint distribution over the run length
and the observed data as follows:

π rn, x1:n( ) � ∑
rn−1

π rn, rn−1, x1:n( )

� ∑
rn−1

π rn rn−1
∣∣∣∣( )π xn rn−1, x1:n

∣∣∣∣( )π rn−1, x1:n−1( ),

(13)
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Figure 5: Schematic diagram of the preclustering method that shows how individual contingent speech segments combined to form
clusters. Di�erent colors represent di�erent speaker’s audio. Contingent audios from the same speakers are combined into a new bigger
segment and formed a new cluster. A newly formed cluster centroid is shown in circle.
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where π(xn|rn−1, x1:n) is the segment log-likelihood which
depends on the data x(r)n and π(rn|rn−1) is the change point
probability which can be calculated as follows:

π rn rn−1
∣∣∣∣( ) �

Hf rn−1 + 1( ) if rn � 0,

1−Hf rn−1 + 1( ) if rn � rn−1 + 1

0 otherwise,




, (14)

where hazard function Hf(η) is calculated using
Hf(η) � g(η)/∑

inf
j�η g(j). We employ this change point

technique in our locomotive sensing model for designing the
binary occupancy detection algorithm. It has been built on the
basis of the following threefold methodology. First, we cal-
culate a priori probability of two successive change points at
a distance d (run length). We use the Gaussian-based log-
likelihoodmodel [50] to compute log-likelihood of the data in
a sequence [s, d], where no change point has been detected.
Second, we calculate log-likelihood for the entire signal
S[t, n], log-likelihood of the data sequence Ss[t, s] where no
change point has been occurred between t and s and π[i, t],
and the log-likelihood that the ith change point occurs at time
step t. Finally, we calculate the probability of a change point at
time step t by summing up the log-likelihoods for that se-
quence. Figure 6 presents the change points and their
probabilities which are being detected successfully in our
proposed locomotive sensing model using the smartphone’s
accelerometer sensor. We �lter those change points based
on empirically determined threshold probability (δth) and
infer the presence of the occupants based on the admitted
change point sequence. We also count the number of change
points in the data sequence which indicates the movement
score that represents how frequent a person moves. �e
overall algorithm has been summarized in Algorithm 3,
and we named it as the locomotive speaker-counting (LSC)
algorithm.

4.4. Location Estimation. In this scenario, our goal was to
explore the possibility of inferring the location at the
zone/room level in di�erent commercial and residential
buildings by only using the smartphones’ magnetometer
sensor signals. Intuitively, this is possible as di�erent rooms
have magnetic patterns that are distinct based on their
unique structures and furniture layouts. �is opens up the
possibility that a sophisticated machine learning technique
may learn to discriminate magnetic signatures belonging to
di�erent rooms. In our experiment, we collected the mag-
netic signature of di�erent rooms, o�ce spaces, and lobby
areas in an academic building using the smartphones’
magnetometer sensor. In a room, all furniture and metallic
objects generally remain �xed in positions and rarely are
moved from one place to another. �is gives us an intuition
that each room has its own magnetic �ngerprints which can
be utilized to detect that speci�c room or semantic location.

We notice that the magnetic sensor is sensitive to
magnetic �uctuations in indoors specially near pillars and
metallic objects. Figure 7 represents this behavior where
peaks occur near pillars, elevators, and so on because pillars
and elevators emit high magnetic �elds. Magnetic �elds
produced by pillars are di�erent for each �oor because of
their varying intensity levels. �ese density characteristics
guide in localization because each �oor is independent of
the structure and height with other levels, from which it is
also probable to infer �oor-level location. From these
empirical observations, we conclude that each room has its
unique magnetic �ngerprint. We analyze di�erent rooms’
data at the university’s Information Technology and En-
gineering (ITE) building for three months. Figure 8 rep-
resents this analysis which depicts each room-speci�c
magnetic �ngerprint helping to create a coarse localization
model for pinpointing the semantic location of gatherings
at the zone/room level.
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We also note that this magnetic signal differs not only
for different indoor environments but also for the phone’s
placement.-is distraction has been optimized in two different
ways: (i) calibratingmagnetic signals and (ii) calculating absolute
magnitude.

During our experimentation, we observe that magnitude
represents different fingerprints for a separate indoor envi-
ronment. Figure 9 describes how normalized magnitude of
different rooms varies upon the total number of samples.
Performing this experimentation over several rooms helps
establish the fact that each room represents a different
magnitude which may form their own fingerprint. We con-
sider magnitude of the magnetometer because for different
persons with distinct movement, it does not deviate much
other than little variations. Figure 10 represents these char-
acteristics where the magnetic signature has been collected
from two different people in the same room, and both signals
delineate the same shape and almost the same magnitude.

From this empirical study, we conclude that, by only
using the magnetic signature, it is difficult to estimate fine-
grained indoor location in different indoor environments;
for this reason, we also consider the mean, standard de-
viation, and variance of different axes. Based on those feature
vectors, we generate two sets of data: training and testing
using the cross-validation process. We use the training set to
learn indoor characteristics by using different machine
learning models and later use the testing set to predict lo-
cation. To estimate fine-grained semantic location, we use
SVM, J48, and random forest classifiers.

4.5. Crowdsourcing Magnetic Model. We propose to use
collaborative sensing or crowdsourcing to ease our ground

truth data collection and location-mapping process. We
have divided the area of interest inside the ITE building as
a grid of squared cells (details are provided in Section 5.2).
We collected data frommost frequently visited grids without
any major obstruction. While crowdsourcing the unique
characteristics of grid location, it was difficult to choose the
right representation of data as analogous magnetic signa-
tures of different grids in different locations were prevalent.
As a result, it was deemed necessary to display a potential set
of locations from which the crowd would finalize the as-
sociation of a semantic label with a particular observed
magnetic signature pattern. Considering this, we provide the
floor information for a specific signature pattern, such that
our crowdsourcing model will enable the crowd to choose
the appropriate semantic location or room from that specific
floor. Nevertheless, the search space remains large as the
possibilities of multiple rooms with similar magnetic foot-
prints in a floor are quite abundance. We propose a simple
grid-mapping crowdsourcing model which reduces the
search space by mapping the magnetic signature pattern of
point of occupancy with the existing patterns and sorts the
rooms according to the similarity measurement. Our model
takes the Manhattan distance and the squared deviation of
magnetic magnitude as input parameters for the mapped
grids and searches the repository of existing signature
pattern database.

Consider a set of cell values found from a test pattern
X � x1, x2, x3, . . . , xn. First, we take x1 from X and try to
map this value with the cell values of existing patterns. We
do not assume to have any prior idea regarding the orga-
nization of the cells in the test pattern. For mapping sig-
nature values, we consider the deviation of ± 2 which has
been determined empirically according to our experiments.

Input: Accelerometer Sensor Data, data, Total number of data points � n

Output: Binary Speaker Count
for (t from 1 : n) do
g[i] � log(1/(n + 1))

if i � 0 then G[i] � g[i]

else
G[i] � log(exp(G[i− 1]) + exp(g[i]))

P[n− 1, n− 1] � Gaussian_log_likelihood(data, n− 1, n)

for (t from 1 : n) do
prob_next_changepoint � Cal_Joint_Dist(data, t, n− 1)

P[t, n− 1] � Gaussian_log_likelihood(data, t, n)

Q[t] � log(exp(P_next_run), exp(P[t, n− 1] + 1− exp(G[n− 1− t])))
for(i from 1 : n− 1) do
changepoint_prob[0, t] � (P[0, i] + Q[i + 1] + g[i]−Q[0])

for (i from 1 : n− 1) do
for (t from 1 : n− 1) do
tmp_sum�(changepoint_prob[i− 1, i− 1 : t] + P[i : t + 1, t] + Q[t + 1] + g[0 : t− i + 1]−Q[i : t + 1])

changepoint_prob[i, t] � log(sum(exp(tmp_sum)))

if(changepoint_prob[i, t]δth) then
num_effective_cp�num_effective_cp + 1
if(num_effective_cp> 0) then
occupancy� 1
return occupancy

ALGORITHM 3: Locomotive speaker-counting (data, n).
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We add patterns which match the similarity value of a cell to
our candidate set C and initialize a n × n distance matrix
M(i) and a n × 1 deviation matrix D(i) for each candidate ci.

M(i) records the Manhattan distances between the mapped
cells in a candidate pattern Ci, and D(i) stores the squared
deviation between the mapped cell values. If we �nd simi-
larities in multiple cell values in a single room signature
pattern, we consider them as an individual candidate. We
take the next test pattern, x2, in the next iteration and do the
similar operation like x1, but this time we consider only the
candidates in C. In this iteration, if the deviation and dis-
tance matrices of a candidate cj do not get updated, then we
discard them from the candidate set and reduce the search
space. We recursively perform the same mapping for the
remaining grid values and compute the �nal matching
candidate set CF with their corresponding distance and
deviation matrices.

At this stage, it is still possible to have a large number of
candidates in CF. To tighten the search space, next we compute
the error measurements for each candidate E(ci) and sort the
candidates with respect to this value assuming that, in an ideal
conversational episode, the participants remain in close
proximity. We calculate E(Ci) based on the following:

E ci( ) � ∑
m

p�1
Xk,p ∑

n

r�1
M(i)

a,rD(i)
r,b( )

p,l

, (15)

where k � 1, l � 1, 1≤ a≤ n, and b � 1.
After calculating the error measurements for each

candidate, we sortCF and choose the �rst 10 candidates from
CF. We plot the magnetic signature pattern of these can-
didates and the test pattern. �e crowd now have to choose
the signature pattern in which they �nd the test pattern. In
our experiments, there were some cases where we observed
the empty candidate set. In these cases, we selected the last
iteration’s candidate set which was not empty. We also asked
the crowd that if they found match with multiple candidates,
then they have to choose the earliest signature pattern.

5. System Implementation and
Evaluation Results

We now discuss the detailed implementation and evaluation
of our model framework.
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5.1. Tools and Resources. We used Google Nexus-5 with
built-in microphone and three-axis accelerometer sensor for
our experiments. Our entire system comprises two parts: (i)
sensing and (ii) classi�cation and clustering; the �rst one was
implemented on Nexus-5 and the latter on the server.
Application software was written in Java which utilizes the
Android application programming interface (API) to sense
microphone and accelerometer signals. Classi�cation and
clustering algorithms and our occupancy-counting algo-
rithm have been implemented on the server side using
Python.

We consider the Python-based deep learning platform
Tensor�ow [51] to implement our deep neural network-
(DNN-) based clustering algorithm. Features are fed into the
DNN in batch with a length of 32. Our DNN comprises 4
layers which represent two hidden layers with 1024 units
each, one input layer of 22 units and one output layer of 512
output units. In the pretraining phase, each layer was trained
for 100 epochs, and in the �ne-tuning phase, each layer was
trained for 1000 epochs. �e internal architecture of our
DNN network is shown in Table 1.

5.2. Data Collection. Magnetic sensor signals are sensed
through our Android application and stored temporarily on
mobile storage. We �rst collected magnetic data for the
training set and subsequently for the testing set. We divided
the room space into small regions, each containing an area of
0.5 × 0.5 m2 and was named as the cell. �us, each room
forms the grid containing cells. We collected data from each
cell for 5 minutes both clockwise and counterclockwise
direction to form the training set. We also maintain �xed
height (approximately 4 feet from the �oor) when collecting
our ferromagnetic �ngerprint because it also depends on the
height. �e partial 3rd �oor map along with the sample
magnetic data collection path is shown in Figure 11. It shows
the sample data collection path of room number 305, where
green line shows how the grid forms and red line shows the
data collecting path in both directions along the grid. We use
a sampling rate of 5Hz for magnetometer sensor data. We
implemented the acoustic sensing and collected conversa-
tional data from di�erent places at di�erent times in natural
settings. Conversational data have been collected and properly
anonymized during the spontaneous lab conversation among
the students (without making the occupants aware of it), lab
meeting, and general discussions in the lobby/corridor in the
presence of a variety of surrounding noise levels. �e de-
mographic for our conversational data collection was 1–10
persons (with 5 females and 5males) in the age group of 18–50
years.�e acoustic data were collected at amonosampling rate
of 16 kHz at 16 bit pulse-code modulation (PCM).

5.3. Privacy. One of the major concerns of smartphone-
based acoustic signal processing is privacy. �is concern
becomes more serious when the smartphone records the
conversation data. Our counting algorithm determines the
number of speakers in this environment in an anonymized
manner. We used text �le as cover in which our recorded
audio is embedded. A secret key is induced for the

embedding and extraction process which is known by both
the sender and the recipient. A steganographic function
takes cover �le as an argument and then embeds audio �le
and key to produce stego as output which is sent to our
server. A reverse steganographic function on our server side
takes stego �le and key as parameters and produces audio �le
as output. �ere are di�erent steganographic methods
(i.e., LSB coding, parity coding, and phase coding), but we
used the simplest method, the least signi�cant bit algorithm,
which replaces the least signi�cant bits of some bytes in the
cover �le to hide a sequence of bytes containing hidden data.
To generate the stego �le, the algorithm �rst converts each
character of the cover �le into bit stream followed by
converting the audio �le into bit streams and �nally
replacing the LSB bit of the cover �le with the bit of the audio
in the secret information.We also ensured that the size of the
�le was not changed during this encoding and it was suitable
for any type of audio �le formats.

5.4. Preprocessing. In this section, we discuss the details of
our preprocessing module.

5.4.1. Acoustic Data Preprocessing. We process the raw
audio streams to remove noise and prepare the audio data
for the feature extractionmodule.�is module is responsible
for segmenting the raw audio signals to extract appropriate
frames. �ese frames contain event information (i.e., voice,
noise, and silence) that accounts for further processing.

(1) Dynamic Segmentation. We create segments from the
entire audio signal dynamically assuming that each raw
audio segment contains single speaker information. We
calculate the con�dence score for the entire audio segment

Table 1: DNN internal architecture.

Input
units

Output
units

Hidden
layers

Each hidden
layer’s unit

Total
layers

22 512 2 1024 4
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391

317 313
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309

322 319 318 316 315 314 312 311

Elev.

372

321 320

Figure 11: Sample magnetic data collection path.
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which represents the probability of �nding the pitch within
a segment. We then start �nding the con�dence score from
a small segment (32ms) and increase the step size in the
successive iterations and repeat this up to an audio segment
of size 10 seconds. We calculated the variance of this
con�dence score, and based on a lower variance associated
with a speci�c segment, we selected that segment length as
one unit of conversation.

If a segment has over 90% con�dence, we considered it. As
there are many audio segments with di�erent segment
lengths, we have chosen a segment length corresponding to
a single person unit associated with a higher con�dence score
and greater number of audio segments with a lower segment
length. Figure 12 shows various con�dence scores for dif-
ferent segment lengths. We selected 2.72 sec as the segment
length instead of 3.36 sec when both have a con�dence score
of 1, but the �rst segment length admitted a greater number of
segments than the latter one. We have calculated this con-
�dence score using the YIN [46] algorithm by using non-
overlapping frames and skipped the best local estimate step.
�is helps to determine on real time the unit audio segment
which solely depends on the recorded audio.

As human voice ranges approximately from 300Hz to
4000Hz, we �lter each of the segments based on that fre-
quency range using the band pass �lter. After �ltering the
raw audio, we have applied the Hamming window to reduce
the spectral leakage while creating audio segments.

(2) Framing. We create frames from the �ltered audio
segments using a �xed-width sliding window. Each frame
has a length of 32ms and 50% overlap. �ese frames are able
to capture the person’s subtle vocal characteristics present in
the sounds.

5.5. Feature Extraction. We discuss di�erent features rele-
vant to our acoustic, locomotive sensing, and localization
technique in this section.

5.5.1. Magnetic Features. For location detection, we used
only the magnetometer sensor. �e smartphones’ magnetic
sensor provides three axis values: x-, y-, and z-axis. From these
values, we calculated magnitude using m �

����������
x2 + y2 + z2
√

.
We considered only the resultant magnitude to mitigate
variations of the readings resulting from smartphones’
di�erent axes based on di�erent positions. We also cal-
culated the mean, variance, and standard deviation of each
reading and combined those features to generate the feature
vectors.

5.5.2. Acoustic Features. We generated four basic features
which are used in the speaker identi�cation—MFCC, pitch,
zero crossing rate (ZCR), and spectral �ux. Each feature has
been described in detail in the following:

(i) MFCC is one of the most signi�cant features which
is used for acoustic processing. We followed the
following steps to process it: (1) take the Fourier
transform of (a windowed excerpt of) a signal, (2)

map the powers of the spectrum obtained above
onto the mel scale using triangular overlapping
windows, (3) take the logs of the powers at each of
the mel frequencies, and (4) �nally, take the discrete
cosine transform of the list of mel log powers. We
excluded the �rst coe�cient of the MFCC and then
chose 20 coe�cients as feature vectors. �e MFCC
feature computation schematic diagram is shown in
Figure 13.

(ii) Pitch is de�ned as the lowest frequency of a periodic
waveform. It is the discriminative feature between
man and woman. �e human voice pitch interval
falls within the range of 50Hz to 450Hz [45]. We
calculated the pitch of di�erent segments using the
YIN [46] algorithm.

(iii) Zero crossing rate (ZCR) is de�ned as the rate at
which the signal changes its sign from positive to
negative or back [52]. Human voice has both voiced
and nonvoiced sounds. Nonvoiced and voiced
sounds show lower or higher variations of the ZCR,
respectively. �erefore, the ZCR is an important
feature to count the number of speakers. �e ZCR is
calculated as follows:

zcr �
∑n

k�0 sign si( )− sign si−1( )
∣∣∣∣

∣∣∣∣
2

. (16)

(iv) Spectral �ux (SF) [53] is de�ned as the l2 norm of the
spectral amplitude di�erence between the current
frame, F(t), and the previous frame, F(t− 1), and
mathematically represented as follows:

SFt �∑
n

i�1
(F(t)−F(t− 1))2. (17)

Human speech changes from voice to nonvoice rapidly
and thus alters its spectral shape frequently. Spectral �ux
helps measure these spectral shape changes. Usually, speech
has a higher SF value.

5.5.3. Locomotive Features. We considered themagnitude of
the accelerometer data as our locomotive feature in order to
mitigate calibration.
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5.6. Accuracy Metric De�nition. To evaluate and compare
the performance of our location-sensitive occupancy model,
we �rst de�ne the following metrics:

(i) Occupancy metric: we computed the average error
count as the normalized predicted occupancy
metric represented by |EC−AC|/N, where
EC,AC, and N denote the estimated people count,
actual people count, and number of samples, re-
spectively. We presented only the absolute value in
order to avoid any positive or negative contribution.

(ii) Location metric: for evaluating location measure-
ment, we consider the following metrics: average
precision (TP/TP + FP), average recall TP/TP + FN,
and average F-1 score (2×precision×recall/precision+
recall), where TP,FP,TN,andFN are the number of
instances of true positive, false positive, true negative,
and false negative, respectively.

(iii) Location prediction error: it is de�ned as the mean
absolute error between predicted and actual values
of the estimated variable. �is error is expressed as
the mean absolute error � (1/n)∑ ​n

i�1|(fi −yi)|,
where fi is the prediction and yi is the actual value.

5.7. Occupancy-Counting Results. We evaluated our op-
portunistic occupancy-counting algorithm in four scenarios:
(i) no conversation among occupants, (ii) all occupants are
conversing in a single clique, (iii) occupants are conversing
in multiple cliques, and (iv) mixed conversing and non-
conversing occupants.

(i) No conversation among occupants: for the �rst sce-
nario, when no occupants are involved in a con-
versation, we used the accelerometer to count the
occupancy. Each accelerometer sensor provides bi-
nary occupancy indication based on our change
point detection algorithm as discussed in Section 4.3,
which computes the total number of people present
in the environment. Figure 14 shows the total
number of people successfully counted using our
locomotive speaker-counting (LSC) algorithm. We
note that our locomotive sensing model achieves
80% accuracy (8 out of 10 people) in predicting
occupancy when most of the users carry their
smartphones with them.

(ii) All occupants are conversing in a single clique: our
opportunistic sensing system plays a critical role
when all occupants have been conversing in a sin-
gle clique. Our system helps to activate a single

microphone for occupancy counting and deactivate
all other microphones and accelerometer sensors
based on the server’s feedback. Figure 15 depicts the
e�ect of cosine distant similarity measures on our
occupancy-counting algorithm (I-SC) as shown in
Figure 1. We noticed that similarity distance angle
measures (in degree) play a pivotal role in reducing
the error count of occupancy inference. In our ex-
periments, with 3 people conversing, we found that
15-degree similarity measure threshold is an ap-
propriate choice for consideration to reduce the
error count for our proposed adaptive people-
counting algorithm.

We also have run experiments in an uncontrolled en-
vironment (completely in a natural setting) without im-
posing any restrictions on smartphones’ relative positions
and distances from each other or from the server. Figure 16
reports the average error count distance as ≈0.5 with re-
spect to di�erent positions of the phone. It is noted that
when the smartphone is placed on the table and two persons
speak, the error count becomes zero, but when three persons
start speaking, error count tends to become slightly higher
due to the ambient noise and overlapped conversation.
Figure 17 shows occupancy-counting results for DNN-SC
on di�erent positions of the phone. We notice that the
average error count distance for DNN-SC is 0.30 which is
40% less than our I-SC approach as we employ a more
selective strategy to select appropriate frames in our frame
selection algorithm.

Figure 18 depicts that the error count increases as the
single clique leader’s distance from other occupants in-
creases. We note that, for a 3-meter distance, the error count
becomes close to two which con�rms that even for a large
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internal distance separation among the conversing occu-
pants, our acoustic sensing model performs quite well.
Figure 19 shows the average error count distance with
di�erent distances of the phone from the speakers. Note that
DNN-SC outperforms I-SC in this case. However, DNN-SC
reports similar trends as in I-SC with the increasing distance
of the phone from the speakers.

Figure 20 presents the performance of our people-
counting algorithm (I-SC) where users speak naturally
with overlapped conversations. It is observed that the av-
erage error count is 0.1 for 2 people and 1.7 for 10 people
when conversing together. �us, the overall average error
count is 0.76 with the number of users present varying from
2 to 10 establishing that our acoustic-based occupancy-
counting algorithm performs well even in a crowded envi-
ronment. Figure 21 presents the performance of our DNN-SC
algorithm.We observe that the overall average error count for
DNN-SC is 0.5316 with the number of speakers present
varying from 2 to 10. Our DNN-SC people-counting algo-
rithm performance improves 30% than our I-SC occupancy-
counting algorithm. In Figure 20, we notice that our I-SC
algorithm performance decreases with the increase of the
number of speakers present in a conversation because of the
overlapping segments which span across multiple speakers’
voice and limited capabilities of MFCC features to

di�erentiate these speakers. In Figure 21, we observe the
similar trends as in our I-SC method, but DNN-SC helps
improve performance with the increasing number of speakers
because DNN-SC can capture the hidden correlation between
features.

(iii) Occupants are conversing in multiple cliques: in our
third scenario, where occupants are conversing in
multiple cliques (three cliques in our experiment),
we deployed three microphones and accelerometer
sensors which are chosen based on the proximity
measure from the server to infer the occupancy.
Figure 22 shows the intragroup count in the pres-
ence of conversational data with distinct clique
formation. In our experiments, the �rst group has 5
occupants (2 men and 3 women), the second group
has 6 occupants (3 men and 3 women), and the last
group has 8 occupants (4 men and 4 women). We
observe that the mean error count is ≈1 even for
our group-based acoustic sensing model which
attests the promise of our occupancy detection
model in di�erent real-life scenarios.

(iv) Mixed conversing and nonconversing occupants: in
our last scenario, where some people speak and
some people remain silent, we propose to utilize our
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hybrid locomotive cum acoustic sensing model to
infer the total number of occupants. For example,
consider a scenario where six persons are involved
in conversation while four remain silent. For con-
versing population, we activate either a single mi-
crophone sensor if there is a single clique or
multiple microphone sensors if there are multiple
conversing cliques as determined by our “estimate
proximity” module implemented on the server.
We use mean error count estimation to infer the
number of people conversing. To estimate the
number of people who are not involved in that
conversation, we utilize our locomotive sensing

model which postulates binary occupancy using
change point detection applied on the accelerom-
eter’s signal and �nally infers the total number of
silent people. Figure 23 plots overall occupancy-
counting performance based on our hybrid ap-
proach. For example, when there are ten people in
which 6 persons converse in a single clique and 4
persons remain silent, our acoustic sensing esti-
mates 5 people out of 6 and locomotive sensing
estimates 4 people out of 4, resulting in total of
predicting 9 people out of 10. We have compared
the performance of our model with Crowd++
framework [6] for counting the number of people.
Table 2 shows that the average error count distance
for Crowd++ is 1.78, whereas for our model (I-SC
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+LSC), it is 0.5, more than a threefold increase in
accuracy for inferring the total number of people.
From Table 2, we observe that our combined (DNN-
SC+LSC) model outperforms the combined (I-SC
+ LSC) model by approximately 34% in total.

5.8. Location Estimation Results. Figure 24 presents the
location estimation error of an occupancy gathering using
di�erent classi�ers. �e random forest classi�ers perform
best with an average precision, recall, and F1 score of 0.98.

We also validated our location model through di�erent
test cases where we consider (i) di�erent trajectories, (ii)
di�erent times of a day, and (iii) di�erent rooms with
a varying number of occupants.

We conducted our experiments following di�erent
trajectories, like keeping mobile phone on the table, fol-
lowing the same or reverse directions when collecting data,
and �nally, collecting data randomly for a room. We noted
that these di�erent movement patterns do not a�ect much in
the performance of our occupancy-gathering location de-
termination model. Figure 25 shows errors for di�erent
movement patterns. We �nd that the stationary pattern
shows better accuracy, while moving in the same direction
gives higher error rate. Average errors are close to 0.015,
which is quite acceptable with a minor number of false
positives or true negatives.

Figure 26 depicts the varying nature of the magnetic
signature during the di�erent times of a day.We observe that
the location estimation of any gatherings is similar during
the di�erent times of a typical day. It shows that error ranges
approximately from 0.015 to 0.03 due to the global variation

of weather and other magnetic factors making our model as
time invariant.

We also ran experiments for location-sensing model
with respect to di�erent rooms at di�erent �oors in ITE
building with a di�erent set and size of the occupants. From
Figure 27, we do observe that the mean absolute error
approximately varies in the range of 0.015 to 0.04 which has
a negligible e�ect on the performance of our location-
sensitive occupancy determination model. We observed
some discrepancies between di�erent subjects’ data for room
321 and room 461. After investigating, we found that the
discrepancies happened due to unusual magnetic inferences
of electronic devices present while collecting data for subject II.
To evaluate our crowdsourcing model, we ran a simulation
of our magnetic crowdsourcing model in the Vowpal Wabbit
(VW) toolkit [54]. We implemented our mapping algorithm
on the server side and then used the function active_interactor
of VW to interact with the users. We showed 10 magnetic

Table 2: Comparison of average error count between Crowd++ and our model.

Number of speakers Crowd++ (error count) Combined (I-SC+ LSC)
(error count)

Combined (DNN-SC+LSC)
(error count)

2 0.5 0.167 0.22
4 2.33 0.5 0.36
6 2.5 0.83 0.40
Average 1.78 0.5 0.33
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signature patterns and 1 test pattern to an user and asked him
to choose the magnetic signature pattern in which he/she
�nds the test pattern. 10 participants participated in the
crowdsourcing, and in Figure 28, we show the overall ac-
curacy for each participant when given 15 pattern-matching
tasks. Average accuracy of gaining correct annotation for
these 15 patterns is ≈81% which is adequately high. Our
results indicate that the probability for getting noisy labels is
very low, and the crowd-annotated data can be chosen as
input to the classi�er.

6. Discussion and Future Work

In the current version of our work, we have assumed that
people keep their smartphones in the pocket or in the hand
which might not be ideal in some cases. In future, our plan is
to make our architecture more robust and independent of
smartphones’ location. �e performance of our counting
algorithm does not get a�ected by TV or radio sounds as TV
or radio follows di�erent modulation techniques which
make it easier for us to remove those external noises from
resultant audio signal systems. We have used source sepa-
ration where signi�cant overlap between human conver-
sation and TV occurs. In the current implementation,
location-mapping process is independent of the classi�ca-
tion process. In future, we plan to develop and integrate
a combined mapping and classi�cation model. We also plan
to investigate �ne-grained �oor-level location using smart-
phone barometric sensing. We plan to investigate a more

advanced opportunistic sensing model considering micro-
phone, accelerometer, and magnetometer sensor participa-
tion not only based on a server-based architecture but also
based on an intersmartphone distributed collaborative
sensing-based approach.

7. Conclusion

In this paper, we presented an innovative system to infer the
number of people present in a speci�c semantic location
which opportunistically exploits the accelerometer and
microphone sensor of smartphones for people counting. We
proposed an acoustic sensing-based unsupervised clustering
algorithm by addressing the underpinning challenges
evolving from naturalistic overlapped and sequential con-
versation to infer the occupancy in an environment. We
posit a change point detection-based locomotive sensing
model to infer the number of people in the absence of any
conversational episode. We implement an opportunistic
context-aware client-server-based architecture to leverage
smartphones’ microphone, accelerometer, and magnetom-
eter sensors and combine our acoustic sensing with loco-
motive and semantic location-sensing model to better
predict the location-augmented occupancy information. We
have also demonstrated a novel crowdsourcing model for
reducing the e�ort of collecting location information at the
zone/room level at a large scale. Our experimental results
hold promises in a variety of natural settings with an average
error count distance of 0.76 in the presence of 10 users. We
believe that this investigation holds promises and helps to
open up many new research directions in this opportunistic
multimodal sensing domain.
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