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Abstract—Disease named entity recognition (NER) is an impor-
tant enabling technology to develop various downstream biomedical
natural language processing applications. This is a challenging task,
which requires addressing potential ambiguities due to variable
contextual usage of the disease name mentions in clinical texts. In
particular, clinical trial texts have unique complexities compared
to patient-focused clinical reports or information-rich biomedical
research articles, as they typically define drug testing eligibility re-
quirements for patient cohorts via compound contextual and logical
relationships. In this paper, we propose a novel disease NER model
for clinical trial texts by using deep contextual embeddings with
relevant domain-specific features, word embeddings, and character
embeddings in a bidirectional long short-term memory network-
conditional random field (BiLSTM-CRF) framework. Experiments
and analyses on a clinical trial dataset and the benchmark NCBI
scientific article dataset show the effectiveness of the proposed
model.

Index Terms—Disease Named Entity Recognition, Clinical
Trial, Deep Learning, Contextual Embedding, Domain Knowl-
edge Embedding

I. INTRODUCTION

Disease named entity recognition (NER) is an important
enabling technology to develop various downstream biomedical
natural language processing (NLP) applications such as clinical
trial matching, patient profiling, population health management,
biomedical article retrieval, pharmacovigilance etc. [1]. This is
a challenging task, where potential ambiguities due to variable
contextual usage of the disease name mentions need to be
addressed. In particular, clinical trial texts have unique complex-
ities compared to patient-centric clinical reports or biomedical
research articles, as they typically define patient cohorts for
drug testing via communicating relevant clinical characteristics
with compound contextual and logical relationships.

Several approaches such as rule-based or traditional machine
learning and deep learning techniques have been investigated in
the literature for disease named entity recognition over the years
[2], [1]. The rule-based systems or traditional machine learning-
based techniques heavily depend on handcrafted rules or
features and domain knowledge. Such systems are generally not
scalable as they are dependent on extensive manual intervention.
Therefore, deep learning techniques have gained popularity
in the recent past due to their ability of extracting features
automatically to learn meaningful representations from clinical

text [3]. Word embeddings and character embeddings are the
most common techniques used to represent the features from
clinical text. Such methods can help recognize disease name
mentions in a clinical text, but they fail to consider relevant
contextual information. For example, in the sentence “chronic
obstructive pulmonary disease (COPD) is a life threatening
disease”, The term ‘COPD’ can be treated as both gene
mention and disease mention when only word or character-
level information is considered. Therefore, models need to
understand the overall context to conclude that ‘COPD’ is
a disease in the given sentence. Thus, existing disease NER
models face difficulty to recognize disease name mentions
due to complex inclusion and/or exclusion criteria describing
patient eligibility in clinical trial texts.

To this end, we propose a novel disease NER model for
clinical trial texts by incorporating deep contextual embeddings
[4] with relevant domain-specific features, word embeddings,
and character embeddings in a bidirectional long short-term
memory network-conditional random field (BiLSTM-CRF)
framework [1]. Our main contributions are summarized as
follows:

+ We propose a novel disease NER model for clinical trial
texts by incorporating sentence-level contextual informa-
tion via deep context embeddings learned with language
models (ELMo) [4] in addition to relevant domain-specific
features, word embeddings, and character embeddings
within a bidirectional long short-term memory network-
conditional random field (BiLSTM-CRF) framework [1].

+ We evaluate the performance of our model in comparison
to various existing disease NER models using a clinical
trial dataset [5] and a biomedical article dataset [6]. To
the best of our knowledge, this is the first deep learning
based model proposed for extracting clinical concepts
specifically from clinical trial text. Experimental results
demonstrate that our model outperforms existing state-of-
the-art approaches and further qualitative analysis shows
the effectiveness of our model for clinical trial texts.

II. RELATED WORK

Recently, deep learning models have gained popularity and
have been effectively applied in the biomedical NLP domain.
Various deep learning models such as convolutional neural
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networks (CNN) and recurrent neural networks (RNN) have
been applied to perform the disease NER task [7], [2]. Zhao et
al. proposed a disease named entity recognition model that used
character embeddings generated via stacking the convolution
layers of a character-based CNN model [8]. However, in
our proposed model, we use external domain knowledge
embeddings to improve the recognition performance.

Bidirectional long-short term memory network (Bi-LSTM)
also has been extensively used in the literature due to its ability
to consider both forward and backward contexts with respect
to the specific mentions for recognizing clinical events such
as diseases, and treatments [9], [10]. In addition, Conditional
Random Fields (CRF) consider the whole sentence instead of
individual word positions and can produce higher accuracy
for the entity recognition task by maximizing the probability
of observing a sentence given a specific set of mentions.
Researchers combine Bi-LSTM and CRF networks to consider
both relevant input features and sentence-level annotation
information to infer named entities from input text [11]. Si et
al. proposed a disease NER model that cascades a CNN model
with RNN to obtain character embeddings [3]. By contrast, we
use an integrated embedding scheme with both character-based
CNN and LSTM models.

Deep learning techniques have been also found to be effective
with integrated domain knowledge and contextual information
for the biomedical concept extraction task [12], [13], [1], [4],
[14]. Word embeddings that accurately reflect the context of
the words in a sentence can be obtained using a new language
model-based method called, ELMo [4]. Si et al. explored ELMo,
but they did not incorporate domain knowledge embeddings
and did not evaluate the model on clinical trial texts [14]. The
model architecture of [1] is similar to our proposed model,
however, they did not consider contextualized embeddings from
the given corpus. By contrast, we consider both contextual
word embeddings and domain knowledge embeddings to learn
better representations of the clinical trial text.

III. METHODS

NER can be cast as a sequence-labeling task. In this
work, we propose a hybrid LSTM-CRF model to identify
disease name mentions. This bidirectional LSTM network
enables considering both forward and backward features in a
given sentence and sequential conditional random field (CRF)
annotates the tags taking the softmax output of Bi-LSTM
layer as input. Our model comprises of the following: (i) a
feature representation layer, and (ii) a bidirectional LSTM-CRF
network. The overall architecture is shown in figure 1. We
discuss the details of the architecture below.

A. Feature Representation Layer

The feature representation layer takes a sequence of in-
put (z1,x2,...,x,) containing n words and generates a
d—dimensional feature vector for each word. We consider
several types of embeddings to capture the inherent features of
the sentences. In particular, the d—dimensional feature vector
for each sentence is obtained via concatenation of four types of

representations: word embedding, context embedding, domain
knowledge embedding, and character embedding. The detailed
feature representation layer is shown in figure 2.

Word Embedding: We obtain word embeddings using the
publicly available GloVe' representation. It generates word
embeddings by considering both local context window and the
global matrix factorization. We use 300 dimensional vector
representation for each word and denote this embedding as
Vword-

Context Embedding: GloVe-based word embedding mainly
relies on word-level co-occurrence statistics. In order to
encode context-level information, we obtain context-aware
word representations using the language model-based method,
ELMo [4]. It comprises of a character-based Convolutional Neu-
ral Network (char-CNN) and two-layer bidirectional-Language
Model (bi-LM) to embed contextual information through a
highway connection and a low-dimensional projection layer,
which are introduced after stacking the char-CNN and bi-LM
layers. Unlike traditional word embedding that represents a
stable embedding vector for downstream tasks, ELMo captures
contextual information dynamically for each word as each word
is represented as a function of the given sentence. We denote
this embedding as Vejmo-

Character Embedding: Following [1], we generate a
charMIX embedding vector, V,,;,, which is formed by con-
catenating two embedding vectors from charCNN (V_.,,)
and charLSTM (Vis,). The charCNN model takes words
as input, then first looks up in the character embedding
matrix Q € R**ICl (where the embedding vector dimension
is d) and forms the embedding matrix, C*. The matrix,
CF* is then convoluted with multiple filter/kernel matrices.
Thereafter, we apply a pooling operation to get the final
fixed-dimensional embedding vector, V_,,. The charLSTM
architecture comprises a bi-directional LSTM layer and takes
the sequence of characters in a word to generate the character
embedding vector Vjs¢,,, which consists of both forward and
backward hidden states [h]; h!].

Domain Knowledge Embedding: Inspired by [1], the
domain knowledge (DK) embedding is obtained from two
sources: (i) lexicon/clinical vocabulary, and (ii) a hybrid clinical
NLP engine [15]. The domain knowledge embedding is denoted
as Vir = [View; Viag)- We combine multiple disease specific
dictionaries such as MEDIC, UMLS etc. to obtain a rich
clinical vocabulary to generate the lexicon embeddings. We
build a TRIE-like data structure for efficient access of the
vocabulary. Generally, TRIE-like data structures are preferable
to store words of a dictionary such that adding, modifying, and
querying the words become efficient. Such structure also stores
tags associated with each word in the vocabulary. Therefore, a
given sentence can be easily searched in the TRIE dictionary
tree and corresponding BIO sequence tags can be annotated
automatically. We transform the BIO tags to generate lexicon
embeddings Vj.,. The clinical NLP engine uses a syntactic
parser and clinical ontologies such as SNOMED-CT to provide

Uhttps://nlp.stanford.edu/projects/glove/
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Fig. 1: The proposed architecture for disease name recognition.

tags. Then, we generate the external tagging embeddings Vg
based on the sequence of tags provided by the NLP engine.

In summary, the feature representation layer concate-
nates the above four embeddings to represent a given sen-
tence. We denote the final feature embedding as Vi =
[Viword; Vetmo; Viniz; Var]- These features are then fed into the
bidirectional LSTM-CRF layer for tagging the sequence of the
clinical trial text.

B. Bidirectional LSTM-CRF Layer

We use a bidirectional LSTM-CREF architecture to predict the
corresponding tags: O (O=outside), B-disease (B=beginning),
and I-disease (I=intermediate) from a given clinical trial text. In
particular, Bidirectional LSTM takes a sequence of embedded
feature vector, Vy.; as input and generates the sequence
y = (y1,¥2,...,yn) that represents feature encodings from
the embedded features. We denote this encoded feature as
Vii—tstm = [h{;hY]. This feature vector, Vii_jsm is then
concatenated with domain knowledge embedding, Vy; to
generate the input feature vector, [Vi;—jstm; Vag] for the fully
connected layer. We consider the output of the fully connected
layer that is multiplied with corresponding weights, Wy and
bias, by, as input for the CRF layer and finally, the model
predicts the most probable tag sequence.
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Fig. 2: Feature Representation

IV. EXPERIMENTAL SETUP

Our model is implemented using Tensorflow?. We evaluate
the effectiveness of our models with two datasets. We discuss
the implementation details below.

For word embedding, we use 300-dimensional embeddings
from publicly available GloVe® that is trained on 6 billion
tokens from a large corpus text [16].

We embed sentence-level context using the ELMo model.
We use the default configuration for ELMO embedding used
in [4]. ELMo embedding comprises a charCNN embedding
followed by a two layer bi-LSTM model. The charCNN model
provides an embedding size of 16. It comprises 7-layers of
filters with width 1,2,3,4,5,6,7 and the filter numbers are
32,32,64,128,256,512,2014. The bi-LSTM model has 4096
dimensional hidden layers. The output of these two embeddings
are then projected to a 512 dimensional space and a highway
connection is added at the end.

We keep a fully connected layer after the bi-LSTM layer
and the dimension of this layer is set to 500, whereas the
dimensions of domain knowledge and bi-LSTM layers are set
to 200, and 300, respectively.

We initialize our charCNN and charLSTM models with
random values and generate the character embeddings with
vector size of 100. This charCNN model has 7 filters with
dimensions of 25, 50, 75, 100, 100, 100, 100 and window size
of 1,2,3,4,5,6,7. It allows the maximum word length of 40; We
padded -1 to keep all the word lengths uniform. We also set
the char-LSTM embedding dimension to 100.

As mentioned before, our TRIE dictionary is built with a
rich lexicon/vocabulary and it predicts BIO tags. We then use a
randomly assigned vector for each tag. Similarly, we form the

Zhttps://www.tensorflow.org/
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external embeddings. Both the lexicon and external embedding
dimensions are set to 100.

We use mini batch gradient descent methods with batch
size 20 to train our proposed model. Initial learning rate is
set to 0.001, and in every epoch the learning rate is decayed
exponentially, and the decayed rate is set to 0.9. We use Adam
Optimizer to train our model. We also set early stopping criteria
during training and in this process, we stop training our model
if we observe no performance improvement (F1-score) on the
validation set for more than 40 epochs.

V. DATASETS

In this work, we use two publicly available datasets and a
collection of domain knowledge sources for our experiments
and evaluation.

NCBI Dataset: Due to unavailability of a disease name
annotated clinical trial dataset, we leverage the NCBI disease
corpus* for our experiments [6]. This dataset has a collection
of 793 PubMed abstracts and is fully annotated at the mention
and concept level. It has a total of 6,892 disease mentions
with 790 unique disease concepts. Table I shows the detailed

methods. We compute accuracy based on exact match at the
word level and precision, recall and Fl-score are computed at
phrase level. Table II shows the performance comparison of
our proposed methods with state-of-the-art methods. We also
show the impact of contextualized embeddings via a detailed
analysis on clinical trial texts.

A. Performance comparison on NCBI dataset

In this study, we consider four different scenarios of our
proposed model, henceforth termed as the context-BiLSTM-
CRF model. For context embedding, we use pretrained ELMo
on a general corpus [4], and also fine-tune the ELMo model
on clinical trial text [5], and Wiki&MIMIC dataset [17]. We
also train ELMo from scratch using the clinical trial text to
learn and explore the performance of our proposed Context-
BiLSTM-CREF on clinical trial context. We compare these four
different context-based scenarios while training our proposed
models using the NCBI training dataset and then report the
results on NCBI test set in Table II.

TABLE II: Comparative performance measurement

statistics of the NCBI dataset. [ Accuracy [ Precision | Recall | FI-Score
Existing Disease NER systems
TABLE I: NCBI Dataset statistics. Sahu et al. (2016)[3] - 0849 | 0.741 0.791
Dogan et al. (2012)[18] - - - 0.818
Split # sen- | sentence | # # unique to- | # labels Habibi et al. (2017) [19] - 0.853 0.836 0.844
Type tences length tokens kens Zhao et al. (2017) [8] - 0.851 0.853 0.852
(avg.) Amazon Comprehend med- - 0.430 0.749 0.546
Train 5,576 23 132,584 | 9,805 2911 ical [20]
Test 941 25 24,019 3,679 535 DK-BiLSTM-CREF [1] 0.981 0.868 0.839 0.853
Valid 918 25 23,456 3,580 487 Our Proposed Models
Context-BiLSTM-CRF 0.982 0.847 0.864 0.855
.. . (clinical)
Clinical Trials: We analyze our proposed model perfor- [Context-BiLSTM-CRE 0.083 0.858 0.865 0.861
mance using an unannotated clinical trial dataset [5] containing Context-BiLSTM-CRF 0.983 0.844 0.865 0.854
s . e (Wiki & MIMIC)
a tot.al of 241,006 clinical trial descrlptlpns from. the Texst Contex BILSTMCRE 0957 08I0 0870 5SS
REtrieval Conference (TREC), 2017 precision medicine track®. | (clinical scratch)

We train the ELMo model on this corpus for one epoch
achieving the perplexity score of 1.55. Due to lack of annotation,
we compare disease name mentions recognized by both our
proposed model and the DK-BiLSTM-CRF model [1] by
manually evaluating the outputs.

Domain Knowledge Source: Following the work [1], we
use the MEDIC® disease vocabulary, UMLS clinical terms of
‘Disease or Syndrome’ semantic types’ and an in-house cancer
specific ontology to generate lexicon features. In addition, we
use a hybrid clinical NLP engine [15] to obtain disease tags
that are added as external tagging embeddings in our disease
NER framework.

VI. EVALUATION RESULTS AND DISCUSSION

We use accuracy, precision, recall and F1-score metrics to
measure the performance of our proposed models. We compare
the performance of our method with existing state-of-the-art

“https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/

Shttp://www.trec-cds.org/2017.html\#documents

Shttp://ctd. mdibl.org/voc.go?type=disease

7https://www.nlm.nih.gov/research/umls/META3_current_semantic_types.
html

Table II shows the performance comparison with existing
NER systems. We observe that our proposed model, context-
BiLSTM-CREF outperforms other existing disease NER systems
due to the use of contextual embeddings, which confirms the
effectiveness of contextual information in our proposed neural
network architecture. Comparison of our models with various
existing systems [21], [22], [19], [8] including the recently
released Amazon Comprehend Medical NLP tool® [23] thus
demonstrates the usefulness of our proposed architecture.

We notice that Context-BiLSTM-CRF (clinical scratch)
performs better than existing methods and achieves accuracy
and recall values of 0.984 and 0.870 respectively. Context-
BiLSTM-CRF (clinical scratch) performs better due to the
contextual knowledge learned exclusively from clinical trial
texts and the classifier encountering less ambiguity with other
contextual knowledge such as general text from Wiki. Context-
BiLSTM-CRF model is trained with general text, which also
contains clinical concepts and achieves better F1 score due
to the smaller difference on both precision and recall values.

8https://aws.amazon.com/comprehend/medical/



This model identifies disease concepts more correctly out of
the predicted disease name mentions. Although our proposed
model achieves a better recall score, the DK-BiLSTM-CRF
model achieves a better precision score (0.868), which indicates
that our proposed model predicts more disease relevant text.
Therefore, our best model with context and domain knowledge
embeddings has the best accuracy of 0.984, and recall of 0.870
establishing the new state-of-the-art performance compared
with existing methods on the NCBI dataset.

To further analyze the performance of our model, we report
normalized confusion matrices for both DK-BiLSTM-CRF and
Context-BiLSTM-CRF models in figure 3. Gold labels are
denoted on the y-axis and predicted labels are denoted on the
x-axis. From the figure, we note that the DK-BiLSTM-CRF
(left confusion matrix) model predicts 0.84, 0.85, and 0.99
fractions of the gold labels as B-disease, I-disease, and O tags,
respectively. By contrast, our proposed Context-BiLSTM-CRF
(right confusion matrix) predicts 0.89, 0.89 and 0.99 fractions of
the gold labels as B-disease, I-disease and O tags, respectively.
We conclude that our model outperforms DK-BiLSTM-CRF
for tagging both the B-disease and I-disease name mentions
considerably.

B. Importance of learning contextual embeddings from clinical
trial text

In this section, we investigate the importance of learning
contextual embeddings from clinical trial text. We evaluate the
performance of our models on clinical trial text. We present a
representative result of our evaluation in figure 4, and 5. We
highlight the annotated text using different colors. The “green’
colored text represents text that is appropriately annotated as
disease concepts by the context-biLSTM-CRF model and are
missed by the DK-biLSTM-CRF model. The red highlights
represent concepts which are incorrectly annotated as disease
concepts by the context-biLSTM-CRF model but not by the
other model. Finally, the texts highlighted with yellow are the
ones that are correctly identified as “non-disease” concepts
by the context-biLSTM-CRF model, but are falsely labeled as
disease concepts by the DK-biLSTM-CRF model.

Table III, and IV show the comparative disease detection
performance for both DK-biLSTM-CRF, and our proposed
context-biLSTM-CRF models for two clinical trial text doc-
uments. These tables show appropriate detection of disease
names by the individual models. For this experiment, we train
these models using NCBI dataset and evaluated them on the
clinical trial text. Manual evaluation of the outputs from these
two models show how our proposed model performs better
than the other model.

From table III, and IV, it is observed that DK-BiLSTM-
CREF often fails to recognize disease name mentions, while
our proposed context-biLSTM-CRF model is able to recognize
disease names effectively. In several occasions, DK-BiLSTM-
CRF falsely identified various clinical and non-clinical terms
as disease concepts. For example, DK-BiLSTM-CRF detects
“Criteria”, “vascular access” and “toxicity” as disease named
entities, whereas our proposed model successfully regards these

i

TABLE III: Model comparison for trial #NCT02432963

Predicted Is Disease Cases Cases Reason

Disease where where DK- | for Not

Concepts Context- BiLSTM- Correct

by either BiLSTM- CRF is

models CRF better

is Cor-
rect/Better

anti- No v X Not

programmed Disease

cell death

allergy Yes v X Partial

to egg Match

proteins

ipilimumab | No X v Not
Disease

HER2-ve Yes v X Partial

advanced Match

breast

Vitiligo Yes v X Not Anno-
tated

SC No v X Not
Disease

bladder, Yes v X Partial

soft tissue Match

sarcoma,

triple-

negative

breast

cancer

Vaccinica No v X Not
Disease

IRB No v X Not
Disease

Criteria No v X Not
Disease

Toxicity No v X Not
Disease

Unresectable | Yes v X Not Anno-

Solid tated

Neoplasm

immune- Yes v X Not Anno-

mediated tated

adverse

reactions

as non-disease concepts. Another aspect where the context-
biLSTM-CRF model outperforms the DK-BiLSTM-CRF model
is the disambiguation of acronyms. Various acronyms found
in these two representative clinical trials are inappropriately
identified as disease concepts by the DK-BiLSTM-CRF model,
e.g., “ULN, SC, MTD, KRAS, DLT” etc. By contrast, our
proposed model understands the surrounding contexts of the
concepts better, and can correctly identify them as non-disease
concepts. Finally, our proposed model can accurately identify
the extended disease names along with associated qualifiers.
For example, our model perfectly recognizes the context and
appropriately detects the full disease name as opposed to the
short uninformative form such as, “allergy to egg protiens” vs
“allergy” only, “HER2-ve advanced breast cancers” vs “breast
cancers” only, “soft tissue sarcoma” vs “sarcoma” only etc.
Overall, our in-depth analyses on clinical trial texts suggest
that the proposed context-BiLSTM-CRF model would more
likely fit various downstream clinical concept recognition use
cases and applications that require more interpretability of
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Fig. 3: Normalized confusion matrix for DK-BiLSTM-CRF (left) and Context-BiLSTM-CRF (right) on NCBI dataset

TABLE IV: Model comparison for trial #NCT02389842

Predicted Is Disease Cases Cases Reason

Disease where where DK- | for Not

Concepts Context- BiLSTM- Correct

by either BiLSTM- CRF is

models CRF is | better

correct
/Better

Palbociclib No X v Not
Disease

advanced Yes v X Partial

solid Match

tumours

MTD No v X Not
Disease

HER2-ve Yes v X Partial

advanced Match

breast

cancers

KRAS No v X Not
Disease

DLT No v X Not
Disease

PIK3CA No X v Not
Disease

ER+ve Yes v X Partial

and HER2- Match

ve post-

menopausal

breast

cancer

Mitomycin- | No v X Not

C Disease

NB No v X Not
Disease

ULN No v X Not
Disease

DLCO No X v Not
Disease

central No v X Not

nervous Disease

system

vascular ac- | No v X Not

cess

Disease

the input text. Therefore, our model is more suitable to the
applications where it requires understanding of detailed context
to satisfy end users. Furthermore, our proposed model can be
fine-tuned on new clinical datasets towards better generalization
of the models.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel disease NER model
for clinical trial texts by using deep contextual embeddings
with relevant domain-specific features, word embeddings,
and character embeddings in a bidirectional long short-term
memory network-conditional random field (BiLSTM-CRF)
framework. Extensive experiments and analyses on a clinical
trial dataset and the benchmark NCBI scientific article dataset
show the effectiveness of the proposed model. In the future,
we will experiment with deep bidirectional transformer-based
language models (BERT) [24] to generate deep contextualized
embeddings of clinical trial texts.
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OFFICIAL TITLE

A Phase | Study of a pS3MVA Vaccine in Combination With Pembrolizumab

BRIEF SUMMARY

This phase | trial studies the side effects of vaccine therapy and pembrolizumab in treating patients with solid tumors that have spread to other places in the body and usually cannot
be cured or controlled with treatment, that have failed prior therapy, and that cannot be removed by surgery. Vaccines made from a gene-modified virus may help the body build an
effective immune response to kill tumor cells. Monoclonal antibodies, such as pembrolizumab, may block tumor growth in different ways by targeting certain cells. Giving vaccine
therapy together with pembrolizumab may be a better treatment in patients with solid tumors.

DETAILED DESCRIPTION

I. To determine the safety and tolerability of combined pS3MVA vaccine (modified vaccinia virus Ankara vaccine expressing p53) and pembrolizumab that are well-tolerated in patients
with refractory, tumor protein 53 (p53) over expressing cancer.

SECONDARY OBJECTIVES

I. To evaluate clinical response and anti-p53 T cell immune responses.

OUTLINE: Patients receive pembrolizumab intravenously (IV) over 30 minutes followed by modified vaccinia virus Ankara vaccine expressing p53 subcutaneously (SC) at least 30 minutes
later once in weeks 1, 4, and 7. Patients may receive additional doses of pembrolizumab in weeks 10, 13, 16, and 19, for a maximum of 7 doses if there are no
disease. Treatment continues in the absence of disease progression or unacceptable toxicity. After completion of study treatment, patients are followed up period

ELIGIBILITY
Inclusion Criter
- Since p52 mutations occur in a wide variety of tumor types, this is a mixed histology study for incurable tumors; subjects with the following solid tumors are eligible for screening:
non-small cell lung cancer, squamous cell carcinoma of the head and neck, hepatocellular carcinoma, renal cell carcinoma, melanoma, BlSader, ESTHtSsUe SSFeams.
and colorectal carcinoma displaying microsatellite instability and pancreatic cancer
- Advanced (unresectable) solid tumors: patients must have failed or been intolerant to at least one line of standard therapy or refuse standard treatment
- Performance status: patients must have an Eastern Cooperative Oncology Group (ECOG) =< 2 (Karnofsky >= 60%)
- Informed consent: all subjects must have the ability to understand and the willingness to sign an Institutional Review Board (IRB) approved consent form
- Absolute neutrophil count: >= 1,500/ul
Exclusion Criteria:
- Patients may not be receiving any additional investigational agents or radiation therapy
- Pregnancy: pregnant women are excluded from this study; should a woman become pregnant or suspect that she is pregnant while participating on the trial, she should inform her
treating physician immediately; women who are pregnant or breastfeeding are excluded
- Patients with known brain metastasis
- Radiotherapy within 4 weeks prior to entering the study
- Patients with previous exposure to anti-programmed cell death (PD)-1 or anti-programmed cell death ligand 1 (PDL-1) will not be eligible
History of
Patients who have not recovered from adverse events due to agents administered more than 4 weeks earlier
Concurrent use of systemic corticosteroids (nasal corticosteroids, inhaled steroids, adrenal replacement steroids, and topical steroids are allowed)
History of immunodeficiency or autoimmune disease: patients with a history of immunodeficiency, including organ grafts and human immunodeficiency virus (HIV), will not be eligible
Patients with a history of autoimmune disease will also be excluded, specifically those with any active autoimmune disease or a condition that requires systermic corticosteroids;
exceptions to this are subjects with and type | diabetes mellitus, who will be permitted to enroll
Patients with a history of severe with this will be defined as any grade 4 toxi
than 10 mg/day prednisone or equivalent dose) for greater than 12 weeks
- Non-compliance: if it is the opinion of the investigator that a subject may be unable to comply with the safety monitoring requirements of the study, they will be excluded
CONDITIONS
- Adult Solid Neoplasm
- Bladder Carcinoma
- Colon Carcinoma
- Rectal Carcinoma
- Renal Cell Carcinoma
- Soft Tissue Sarcoma

ity requiring treatment with corticosteroids (greater

- TP53 Gene Mutation

ARMS.

Experimental: Treatment (p53MVA, pembrolizumab)

Patients receive pembrolizumab IV over 20 minutes followed by modified vaccinia virus Ankara vaccine expressing p53 SC at least 30 minutes later once in weeks 1, 4, and 7. Patients
may receive additional doses of pembrolizumab in weeks 10, 13, 16, and 19, for a maximum of 7 doses if there are no signs of progressive disease. Treatment continues in the
absence of disease progression or unacceptable toxicity.

Fig. 4: Clinical Trial Text (Trial #NCT02432963)

NcToz3ssEaz
OF FICIAL TITLE:
FIPA: A Phase Ib Study to Assess the Safety, Tolerability and Efficacy of the PIZK Inhibitors, Taselisib (GDC-0032) or Pictilisib (GDC-0941), in Combination With EEISSEEEE. With the
Subsequent Addition of Fulvestrant in PIKSGA mutant Broast Cancers

BRIEF SUMMARY

Part A: This is a phase Ib trial combining the CPK4/6 inhibitor palbociclib with the PI3K inhibitors taselisib, or pict

sib. There are two treatment arms during the dose escalation phase

where patients will receive either taselisib OR pictilisib in combination with palbociclib. Palbociclib, taselisib and pictilisib can all be given orally once daily with food, in a 21-days-on

and 7-days-off schedule. Once the MTD Is reached, the combination with the optimum safety and PK/PD prafilaiwill baskenforward toithaidos sl expansioniphase (Partib):

Part B1: At the MTD dose expansion, fulvestrant will be administered in addition to and orally once daily, in a 21-days-on and 7-days off schedule inthe

ERrve HERZove PIKSGA mutant breast cancer cohort. Fulvestrant will be miven it uscalarly on Doy 1, Day 15 in cyele one followed by Day 1 for all suboeauent cycles.

Part B2: At the MTD dose expansion, patients with PIK3CA mutant will be treated with palbociclib and taselisib or pictilisib orally once daily, in a 21-days-on
ib in combination with either taselisib or pictilisib. The study will include a dose escalation phase (Part A), and an MTD dose expansion phase (Part B).

Part A: will investigate escalating doses of palbociclib with either pictilisib or taselisib administered orally, continuously for 21 days out of a 28 day cycle in patients with advanced solid

to two parallel arms (uUp to 24 patients in each arm with a maximum of 43 patients in Part A). Once the MTD is determined the combination with

tumours recruited simultancous

the optimum safety and PK/PD profile as determined by the SRC will be taken forward to the dose expansion phase (Part B). Part B: The MTD dose expansion phase will be conducted
using the optimal combination from Part A in two parallel arms as follows

B1: PIK3CA mutant ER + will be treated with a triplet combination of palbociclib and either taselisib or pictilisib along with
fulvestrant. Part Bl will require at least two of the first 15 patients to respond to progress to recruit the full 25 patien

B2 0) with PIK3CA mutant advanced solid tumours including at least 8 patients with PIKZCA mutant ER negative and/or HER2 positive breast cancers will be treated with

the doublet combination of palbociclib and either taselisib or pictilisib. Other cancers with
relevant genetic aberrations (e.g. KRAS mutations) may be considered, depending on emerging preclinical and clinical data on these novel antitumour agents. In total, it is expected
that 2 minimum of 70 and up to @ Maximum of 93 patiants will be enrolled into the trial, the final number will depend on the number of dose escalations required to reach DLT. If < 48
patients are enrolled in Part A, investigators will be permitted to enrol > 45 patients in Part B, providing the maximum number of patients remains =93 patients across the study. The
anticlpated accrual rate during the dose escalation phase Is estimated at 2 patients per month. Accrual in the expansion phase Is estimated at 4 patients per month across 2 centres. It
is expected that the trial will have a duration of recruitment of 12 to 24 months.
ELIGIBILITY
Inclusion Criteri
1. Part A (dose escalation): Patients with histologically or cytologically confirmed malignant advanced sold tumours refractory to standard therapy or for which no suitable effective
standard therapy exists, including, but not limited to patients with [BIMEE —utant cancers, those with somatic mutations or other aberrations known to result in a hyperactivated PI3K-
AKT pathway. Advanced breast cancer with the following features:
- ER+wve breast cancer that has progressed on at least one line of prior endocrine
therapy
breast cancer refractory to standard treatment
Part B (dose expansion): Patients with histologically or cytologically advanced solid tumours who have progressed on at least one prior chemotherapy regimen for advanced cancer
with PIK3CA mutation detected from tumour and/or circulating tumour DNA. Patients with HER2 positive breast cancer should have progressed on at least two prior HER2 directed
therapies for advanced breast cancer
Cohort B1 that has progressed on at least one prior hormone therapy for advanced breast cancer.
cluding but not limiting to triple negative and/or HER2 positive breast cancers and lung, head and neck cancers.
NE. PIK3CA mutation may be assessed in archival tumour samples, fresh tumour samples, or in circulating free DNA extracted from plasma or serum. A mutation will be considered
pathogenic if des. d to be recurrent somatic mutation in COSMIC
(http: cancer.sanger.ac.uk/cancergenome/projects/cosmic/). Other cancers with relevant genetic aberrations (e.g. KRAS mutations) may be considered, depending on emerging
preclinical and clinical data on these novel antitumour agents
2. Part A: Measurable disease as assessed by RECIST 1.1 OR evaluable disease. Part B: Measurable disease as assessed by RECIST 1.1 Part B2: Measurable disease as assessed by RECIST
171 OR evaluable disease
3. Life expectancy of at loast 12 weeks
4. Haematological and biochemical indices within the ranges shown below. These measurements must be performed within one week (Day -7 to Day 1) before the patient goes in
the trial.
Haemoglobin (Hb) = 10.0 g/dL Absolute neutrophil count = 1.5 x 109/L Platelet count = 100 x 109/L Serum bilirubin = 1.5 x upper limit of normal (ULN) except for patients with
documented Gilberts' disease Alanine aminotransferase (ALT) and aspartate aminotransforase (AST) = 2.5 x (ULN) unless raised due to tumour in which case up to 5 x ULN is
pormissible
Exclusion Criteria
1. Radiotherapy (except for palliative reasons), endocrine therapy, immunotherapy or chemotherapy during the previous four weeks (six weeks for nitrosoureas, Mitomycin-C) and 4
weeks for investigational medicinal products before treatmeant, except for hormonal therapy with luteinizing hormone -releasing hormone (LHRH) analogues for medical castration in
patients with castrate resistant prostate cancer, which are
permitted, and bisphosphonates or RANK ligand antagonists that are permitted for the management of bone metastases.
2. Patients with prior exposure to both a CDK4/6 inhibitor and a PIZK/ATK/mTOR inhibitor are excluded from the study. Patients with prior exposure to either a PIZK/AKT/mTOR pathway
inhibitor OR a CDK4/6 inhibitor (but not both) are allowed entry into the trial provided that adverse effects have recovered to grade 1 or less. Prior exposure to fulvestrant is permitted.
3. Clinically significant abnormalities of glucose metabolism as defined by any of the following:
Diagnosis of diabetes mellitus types | or |l (irrespective of management).
Glycosylated hacmoglobin (HbA1C) =7.0% at screening
Fasting Plasma Glucose = 8.3mmol/L at screcning. Fasting is definad as no
caloric intake for at least 8 hours.
4. Bl < 50% of predicted value corrected for hematocrit prior to inftiation of study treatment.
5. On-going toxic manifestations of previous treatments = grade 1. Exceptions to this are alopecia or certain other toxicities, which in the opinion of the Investigator should not exclude
the patient
6. Inability or unwillingness to swallow pills, or (for patients receiving fulvestrant) receive IM injections.
7. Known untreated or active central nervous system (CNS) metastases (progressing or requiring corticosterolds for symptomatic control). Patients with a history of treated CNS
metastases are of le, provided they meect all of the following crite
Z Evaluable or measurable disease outside the CNS is present
8. Major surgery (excluding minor procedures, e.g. placement of vascu

r access) within 4 weeks of the first dose of study treatment

Fig. 5: Clinical Trial Text (Trial #NCT02389842))
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