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Abstract—Disease named entity recognition (NER) is an impor-
tant enabling technology to develop various downstream biomedical
natural language processing applications. This is a challenging task,
which requires addressing potential ambiguities due to variable
contextual usage of the disease name mentions in clinical texts. In
particular, clinical trial texts have unique complexities compared
to patient-focused clinical reports or information-rich biomedical
research articles, as they typically define drug testing eligibility re-
quirements for patient cohorts via compound contextual and logical
relationships. In this paper, we propose a novel disease NER model
for clinical trial texts by using deep contextual embeddings with
relevant domain-specific features, word embeddings, and character
embeddings in a bidirectional long short-term memory network-
conditional random field (BiLSTM-CRF) framework. Experiments
and analyses on a clinical trial dataset and the benchmark NCBI
scientific article dataset show the effectiveness of the proposed
model.

Index Terms—Disease Named Entity Recognition, Clinical
Trial, Deep Learning, Contextual Embedding, Domain Knowl-
edge Embedding

I. INTRODUCTION

Disease named entity recognition (NER) is an important
enabling technology to develop various downstream biomedical
natural language processing (NLP) applications such as clinical
trial matching, patient profiling, population health management,
biomedical article retrieval, pharmacovigilance etc. [1]. This is
a challenging task, where potential ambiguities due to variable
contextual usage of the disease name mentions need to be
addressed. In particular, clinical trial texts have unique complex-
ities compared to patient-centric clinical reports or biomedical
research articles, as they typically define patient cohorts for
drug testing via communicating relevant clinical characteristics
with compound contextual and logical relationships.

Several approaches such as rule-based or traditional machine
learning and deep learning techniques have been investigated in
the literature for disease named entity recognition over the years
[2], [1]. The rule-based systems or traditional machine learning-
based techniques heavily depend on handcrafted rules or
features and domain knowledge. Such systems are generally not
scalable as they are dependent on extensive manual intervention.
Therefore, deep learning techniques have gained popularity
in the recent past due to their ability of extracting features
automatically to learn meaningful representations from clinical

text [3]. Word embeddings and character embeddings are the
most common techniques used to represent the features from
clinical text. Such methods can help recognize disease name
mentions in a clinical text, but they fail to consider relevant
contextual information. For example, in the sentence “chronic
obstructive pulmonary disease (COPD) is a life threatening
disease”, The term ‘COPD’ can be treated as both gene
mention and disease mention when only word or character-
level information is considered. Therefore, models need to
understand the overall context to conclude that ‘COPD’ is
a disease in the given sentence. Thus, existing disease NER
models face difficulty to recognize disease name mentions
due to complex inclusion and/or exclusion criteria describing
patient eligibility in clinical trial texts.

To this end, we propose a novel disease NER model for
clinical trial texts by incorporating deep contextual embeddings
[4] with relevant domain-specific features, word embeddings,
and character embeddings in a bidirectional long short-term
memory network-conditional random field (BiLSTM-CRF)
framework [1]. Our main contributions are summarized as
follows:
• We propose a novel disease NER model for clinical trial

texts by incorporating sentence-level contextual informa-
tion via deep context embeddings learned with language
models (ELMo) [4] in addition to relevant domain-specific
features, word embeddings, and character embeddings
within a bidirectional long short-term memory network-
conditional random field (BiLSTM-CRF) framework [1].

• We evaluate the performance of our model in comparison
to various existing disease NER models using a clinical
trial dataset [5] and a biomedical article dataset [6]. To
the best of our knowledge, this is the first deep learning
based model proposed for extracting clinical concepts
specifically from clinical trial text. Experimental results
demonstrate that our model outperforms existing state-of-
the-art approaches and further qualitative analysis shows
the effectiveness of our model for clinical trial texts.

II. RELATED WORK

Recently, deep learning models have gained popularity and
have been effectively applied in the biomedical NLP domain.
Various deep learning models such as convolutional neural
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networks (CNN) and recurrent neural networks (RNN) have
been applied to perform the disease NER task [7], [2]. Zhao et
al. proposed a disease named entity recognition model that used
character embeddings generated via stacking the convolution
layers of a character-based CNN model [8]. However, in
our proposed model, we use external domain knowledge
embeddings to improve the recognition performance.

Bidirectional long-short term memory network (Bi-LSTM)
also has been extensively used in the literature due to its ability
to consider both forward and backward contexts with respect
to the specific mentions for recognizing clinical events such
as diseases, and treatments [9], [10]. In addition, Conditional
Random Fields (CRF) consider the whole sentence instead of
individual word positions and can produce higher accuracy
for the entity recognition task by maximizing the probability
of observing a sentence given a specific set of mentions.
Researchers combine Bi-LSTM and CRF networks to consider
both relevant input features and sentence-level annotation
information to infer named entities from input text [11]. Si et
al. proposed a disease NER model that cascades a CNN model
with RNN to obtain character embeddings [3]. By contrast, we
use an integrated embedding scheme with both character-based
CNN and LSTM models.

Deep learning techniques have been also found to be effective
with integrated domain knowledge and contextual information
for the biomedical concept extraction task [12], [13], [1], [4],
[14]. Word embeddings that accurately reflect the context of
the words in a sentence can be obtained using a new language
model-based method called, ELMo [4]. Si et al. explored ELMo,
but they did not incorporate domain knowledge embeddings
and did not evaluate the model on clinical trial texts [14]. The
model architecture of [1] is similar to our proposed model,
however, they did not consider contextualized embeddings from
the given corpus. By contrast, we consider both contextual
word embeddings and domain knowledge embeddings to learn
better representations of the clinical trial text.

III. METHODS

NER can be cast as a sequence-labeling task. In this
work, we propose a hybrid LSTM-CRF model to identify
disease name mentions. This bidirectional LSTM network
enables considering both forward and backward features in a
given sentence and sequential conditional random field (CRF)
annotates the tags taking the softmax output of Bi-LSTM
layer as input. Our model comprises of the following: (i) a
feature representation layer, and (ii) a bidirectional LSTM-CRF
network. The overall architecture is shown in figure 1. We
discuss the details of the architecture below.

A. Feature Representation Layer

The feature representation layer takes a sequence of in-
put (x1, x2, ..., xn) containing n words and generates a
d−dimensional feature vector for each word. We consider
several types of embeddings to capture the inherent features of
the sentences. In particular, the d−dimensional feature vector
for each sentence is obtained via concatenation of four types of

representations: word embedding, context embedding, domain
knowledge embedding, and character embedding. The detailed
feature representation layer is shown in figure 2.

Word Embedding: We obtain word embeddings using the
publicly available GloVe1 representation. It generates word
embeddings by considering both local context window and the
global matrix factorization. We use 300 dimensional vector
representation for each word and denote this embedding as
Vword.

Context Embedding: GloVe-based word embedding mainly
relies on word-level co-occurrence statistics. In order to
encode context-level information, we obtain context-aware
word representations using the language model-based method,
ELMo [4]. It comprises of a character-based Convolutional Neu-
ral Network (char-CNN) and two-layer bidirectional-Language
Model (bi-LM) to embed contextual information through a
highway connection and a low-dimensional projection layer,
which are introduced after stacking the char-CNN and bi-LM
layers. Unlike traditional word embedding that represents a
stable embedding vector for downstream tasks, ELMo captures
contextual information dynamically for each word as each word
is represented as a function of the given sentence. We denote
this embedding as Velmo.

Character Embedding: Following [1], we generate a
charMIX embedding vector, Vmix, which is formed by con-
catenating two embedding vectors from charCNN (Vcnn)
and charLSTM (Vlstm). The charCNN model takes words
as input, then first looks up in the character embedding
matrix Q ∈ Rd×|C| (where the embedding vector dimension
is d) and forms the embedding matrix, Ck. The matrix,
Ck is then convoluted with multiple filter/kernel matrices.
Thereafter, we apply a pooling operation to get the final
fixed-dimensional embedding vector, Vcnn. The charLSTM
architecture comprises a bi-directional LSTM layer and takes
the sequence of characters in a word to generate the character
embedding vector Vlstm, which consists of both forward and
backward hidden states [hf

t ;h
b
t ].

Domain Knowledge Embedding: Inspired by [1], the
domain knowledge (DK) embedding is obtained from two
sources: (i) lexicon/clinical vocabulary, and (ii) a hybrid clinical
NLP engine [15]. The domain knowledge embedding is denoted
as Vdk = [Vlex;Vtag]. We combine multiple disease specific
dictionaries such as MEDIC, UMLS etc. to obtain a rich
clinical vocabulary to generate the lexicon embeddings. We
build a TRIE-like data structure for efficient access of the
vocabulary. Generally, TRIE-like data structures are preferable
to store words of a dictionary such that adding, modifying, and
querying the words become efficient. Such structure also stores
tags associated with each word in the vocabulary. Therefore, a
given sentence can be easily searched in the TRIE dictionary
tree and corresponding BIO sequence tags can be annotated
automatically. We transform the BIO tags to generate lexicon
embeddings Vlex. The clinical NLP engine uses a syntactic
parser and clinical ontologies such as SNOMED-CT to provide
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Fig. 1: The proposed architecture for disease name recognition.

tags. Then, we generate the external tagging embeddings Vtag

based on the sequence of tags provided by the NLP engine.

In summary, the feature representation layer concate-
nates the above four embeddings to represent a given sen-
tence. We denote the final feature embedding as Vfet =
[Vword;Velmo;Vmix;Vdk]. These features are then fed into the
bidirectional LSTM-CRF layer for tagging the sequence of the
clinical trial text.

B. Bidirectional LSTM-CRF Layer

We use a bidirectional LSTM-CRF architecture to predict the
corresponding tags: O (O=outside), B-disease (B=beginning),
and I-disease (I=intermediate) from a given clinical trial text. In
particular, Bidirectional LSTM takes a sequence of embedded
feature vector, Vfet as input and generates the sequence
y = (y1, y2, ..., yn) that represents feature encodings from
the embedded features. We denote this encoded feature as
Vbi−lstm = [hf

i ;h
b
i ]. This feature vector, Vbi−lstm is then

concatenated with domain knowledge embedding, Vdk to
generate the input feature vector, [Vbi−lstm;Vdk] for the fully
connected layer. We consider the output of the fully connected
layer that is multiplied with corresponding weights, Wf and
bias, bf , as input for the CRF layer and finally, the model
predicts the most probable tag sequence.

Fig. 2: Feature Representation

IV. EXPERIMENTAL SETUP

Our model is implemented using Tensorflow2. We evaluate
the effectiveness of our models with two datasets. We discuss
the implementation details below.

For word embedding, we use 300-dimensional embeddings
from publicly available GloVe3 that is trained on 6 billion
tokens from a large corpus text [16].

We embed sentence-level context using the ELMo model.
We use the default configuration for ELMO embedding used
in [4]. ELMo embedding comprises a charCNN embedding
followed by a two layer bi-LSTM model. The charCNN model
provides an embedding size of 16. It comprises 7-layers of
filters with width 1, 2, 3, 4, 5, 6, 7 and the filter numbers are
32, 32, 64, 128, 256, 512, 2014. The bi-LSTM model has 4096
dimensional hidden layers. The output of these two embeddings
are then projected to a 512 dimensional space and a highway
connection is added at the end.

We keep a fully connected layer after the bi-LSTM layer
and the dimension of this layer is set to 500, whereas the
dimensions of domain knowledge and bi-LSTM layers are set
to 200, and 300, respectively.

We initialize our charCNN and charLSTM models with
random values and generate the character embeddings with
vector size of 100. This charCNN model has 7 filters with
dimensions of 25, 50, 75, 100, 100, 100, 100 and window size
of 1,2,3,4,5,6,7. It allows the maximum word length of 40; We
padded -1 to keep all the word lengths uniform. We also set
the char-LSTM embedding dimension to 100.

As mentioned before, our TRIE dictionary is built with a
rich lexicon/vocabulary and it predicts BIO tags. We then use a
randomly assigned vector for each tag. Similarly, we form the

2https://www.tensorflow.org/
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external embeddings. Both the lexicon and external embedding
dimensions are set to 100.

We use mini batch gradient descent methods with batch
size 20 to train our proposed model. Initial learning rate is
set to 0.001, and in every epoch the learning rate is decayed
exponentially, and the decayed rate is set to 0.9. We use Adam
Optimizer to train our model. We also set early stopping criteria
during training and in this process, we stop training our model
if we observe no performance improvement (F1-score) on the
validation set for more than 40 epochs.

V. DATASETS

In this work, we use two publicly available datasets and a
collection of domain knowledge sources for our experiments
and evaluation.

NCBI Dataset: Due to unavailability of a disease name
annotated clinical trial dataset, we leverage the NCBI disease
corpus4 for our experiments [6]. This dataset has a collection
of 793 PubMed abstracts and is fully annotated at the mention
and concept level. It has a total of 6,892 disease mentions
with 790 unique disease concepts. Table I shows the detailed
statistics of the NCBI dataset.

TABLE I: NCBI Dataset statistics.

Split
Type

# sen-
tences

sentence
length
(avg.)

#
tokens

# unique to-
kens

# labels

Train 5,576 23 132,584 9,805 2,911
Test 941 25 24,019 3,679 535
Valid 918 25 23,456 3,580 487

Clinical Trials: We analyze our proposed model perfor-
mance using an unannotated clinical trial dataset [5] containing
a total of 241,006 clinical trial descriptions from the Text
REtrieval Conference (TREC), 2017 precision medicine track5.
We train the ELMo model on this corpus for one epoch
achieving the perplexity score of 1.55. Due to lack of annotation,
we compare disease name mentions recognized by both our
proposed model and the DK-BiLSTM-CRF model [1] by
manually evaluating the outputs.

Domain Knowledge Source: Following the work [1], we
use the MEDIC6 disease vocabulary, UMLS clinical terms of
‘Disease or Syndrome’ semantic types7 and an in-house cancer
specific ontology to generate lexicon features. In addition, we
use a hybrid clinical NLP engine [15] to obtain disease tags
that are added as external tagging embeddings in our disease
NER framework.

VI. EVALUATION RESULTS AND DISCUSSION

We use accuracy, precision, recall and F1-score metrics to
measure the performance of our proposed models. We compare
the performance of our method with existing state-of-the-art

4https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/
5http://www.trec-cds.org/2017.html\#documents
6http://ctd.mdibl.org/voc.go?type=disease
7https://www.nlm.nih.gov/research/umls/META3_current_semantic_types.

html

methods. We compute accuracy based on exact match at the
word level and precision, recall and F1-score are computed at
phrase level. Table II shows the performance comparison of
our proposed methods with state-of-the-art methods. We also
show the impact of contextualized embeddings via a detailed
analysis on clinical trial texts.

A. Performance comparison on NCBI dataset

In this study, we consider four different scenarios of our
proposed model, henceforth termed as the context-BiLSTM-
CRF model. For context embedding, we use pretrained ELMo
on a general corpus [4], and also fine-tune the ELMo model
on clinical trial text [5], and Wiki&MIMIC dataset [17]. We
also train ELMo from scratch using the clinical trial text to
learn and explore the performance of our proposed Context-
BiLSTM-CRF on clinical trial context. We compare these four
different context-based scenarios while training our proposed
models using the NCBI training dataset and then report the
results on NCBI test set in Table II.

TABLE II: Comparative performance measurement

Accuracy Precision Recall F1-Score
Existing Disease NER systems
Sahu et al. (2016)[3] - 0.849 0.741 0.791
Dogan et al. (2012)[18] - - - 0.818
Habibi et al. (2017) [19] - 0.853 0.836 0.844
Zhao et al. (2017) [8] - 0.851 0.853 0.852
Amazon Comprehend med-
ical [20]

- 0.430 0.749 0.546

DK-BiLSTM-CRF [1] 0.981 0.868 0.839 0.853
Our Proposed Models
Context-BiLSTM-CRF
(clinical)

0.982 0.847 0.864 0.855

Context-BiLSTM-CRF 0.983 0.858 0.865 0.861
Context-BiLSTM-CRF
(Wiki & MIMIC)

0.983 0.844 0.865 0.854

Context-BiLSTM-CRF
(clinical scratch)

0.984 0.840 0.870 0.855

Table II shows the performance comparison with existing
NER systems. We observe that our proposed model, context-
BiLSTM-CRF outperforms other existing disease NER systems
due to the use of contextual embeddings, which confirms the
effectiveness of contextual information in our proposed neural
network architecture. Comparison of our models with various
existing systems [21], [22], [19], [8] including the recently
released Amazon Comprehend Medical NLP tool8 [23] thus
demonstrates the usefulness of our proposed architecture.

We notice that Context-BiLSTM-CRF (clinical scratch)
performs better than existing methods and achieves accuracy
and recall values of 0.984 and 0.870 respectively. Context-
BiLSTM-CRF (clinical scratch) performs better due to the
contextual knowledge learned exclusively from clinical trial
texts and the classifier encountering less ambiguity with other
contextual knowledge such as general text from Wiki. Context-
BiLSTM-CRF model is trained with general text, which also
contains clinical concepts and achieves better F1 score due
to the smaller difference on both precision and recall values.

8https://aws.amazon.com/comprehend/medical/



This model identifies disease concepts more correctly out of
the predicted disease name mentions. Although our proposed
model achieves a better recall score, the DK-BiLSTM-CRF
model achieves a better precision score (0.868), which indicates
that our proposed model predicts more disease relevant text.
Therefore, our best model with context and domain knowledge
embeddings has the best accuracy of 0.984, and recall of 0.870
establishing the new state-of-the-art performance compared
with existing methods on the NCBI dataset.

To further analyze the performance of our model, we report
normalized confusion matrices for both DK-BiLSTM-CRF and
Context-BiLSTM-CRF models in figure 3. Gold labels are
denoted on the y-axis and predicted labels are denoted on the
x-axis. From the figure, we note that the DK-BiLSTM-CRF
(left confusion matrix) model predicts 0.84, 0.85, and 0.99
fractions of the gold labels as B-disease, I-disease, and O tags,
respectively. By contrast, our proposed Context-BiLSTM-CRF
(right confusion matrix) predicts 0.89, 0.89 and 0.99 fractions of
the gold labels as B-disease, I-disease and O tags, respectively.
We conclude that our model outperforms DK-BiLSTM-CRF
for tagging both the B-disease and I-disease name mentions
considerably.

B. Importance of learning contextual embeddings from clinical
trial text

In this section, we investigate the importance of learning
contextual embeddings from clinical trial text. We evaluate the
performance of our models on clinical trial text. We present a
representative result of our evaluation in figure 4, and 5. We
highlight the annotated text using different colors. The “green”
colored text represents text that is appropriately annotated as
disease concepts by the context-biLSTM-CRF model and are
missed by the DK-biLSTM-CRF model. The red highlights
represent concepts which are incorrectly annotated as disease
concepts by the context-biLSTM-CRF model but not by the
other model. Finally, the texts highlighted with yellow are the
ones that are correctly identified as “non-disease” concepts
by the context-biLSTM-CRF model, but are falsely labeled as
disease concepts by the DK-biLSTM-CRF model.

Table III, and IV show the comparative disease detection
performance for both DK-biLSTM-CRF, and our proposed
context-biLSTM-CRF models for two clinical trial text doc-
uments. These tables show appropriate detection of disease
names by the individual models. For this experiment, we train
these models using NCBI dataset and evaluated them on the
clinical trial text. Manual evaluation of the outputs from these
two models show how our proposed model performs better
than the other model.

From table III, and IV, it is observed that DK-BiLSTM-
CRF often fails to recognize disease name mentions, while
our proposed context-biLSTM-CRF model is able to recognize
disease names effectively. In several occasions, DK-BiLSTM-
CRF falsely identified various clinical and non-clinical terms
as disease concepts. For example, DK-BiLSTM-CRF detects
“Criteria”, “vascular access” and “toxicity” as disease named
entities, whereas our proposed model successfully regards these

TABLE III: Model comparison for trial #NCT02432963

Predicted
Disease
Concepts
by either
models

Is Disease Cases
where
Context-
BiLSTM-
CRF
is Cor-
rect/Better

Cases
where DK-
BiLSTM-
CRF is
better

Reason
for Not
Correct

anti-
programmed
cell death

No 3 7 Not
Disease

allergy
to egg
proteins

Yes 3 7 Partial
Match

ipilimumab No 7 3 Not
Disease

HER2-ve
advanced
breast

Yes 3 7 Partial
Match

Vitiligo Yes 3 7 Not Anno-
tated

SC No 3 7 Not
Disease

bladder,
soft tissue
sarcoma,
triple-
negative
breast
cancer

Yes 3 7 Partial
Match

Vaccinica No 3 7 Not
Disease

IRB No 3 7 Not
Disease

Criteria No 3 7 Not
Disease

Toxicity No 3 7 Not
Disease

Unresectable
Solid
Neoplasm

Yes 3 7 Not Anno-
tated

immune-
mediated
adverse
reactions

Yes 3 7 Not Anno-
tated

as non-disease concepts. Another aspect where the context-
biLSTM-CRF model outperforms the DK-BiLSTM-CRF model
is the disambiguation of acronyms. Various acronyms found
in these two representative clinical trials are inappropriately
identified as disease concepts by the DK-BiLSTM-CRF model,
e.g., “ULN, SC, MTD, KRAS, DLT” etc. By contrast, our
proposed model understands the surrounding contexts of the
concepts better, and can correctly identify them as non-disease
concepts. Finally, our proposed model can accurately identify
the extended disease names along with associated qualifiers.
For example, our model perfectly recognizes the context and
appropriately detects the full disease name as opposed to the
short uninformative form such as, “allergy to egg protiens” vs
“allergy” only, “HER2-ve advanced breast cancers” vs “breast
cancers” only, “soft tissue sarcoma” vs “sarcoma” only etc.

Overall, our in-depth analyses on clinical trial texts suggest
that the proposed context-BiLSTM-CRF model would more
likely fit various downstream clinical concept recognition use
cases and applications that require more interpretability of



Fig. 3: Normalized confusion matrix for DK-BiLSTM-CRF (left) and Context-BiLSTM-CRF (right) on NCBI dataset

TABLE IV: Model comparison for trial #NCT02389842

Predicted
Disease
Concepts
by either
models

Is Disease Cases
where
Context-
BiLSTM-
CRF is
correct
/Better

Cases
where DK-
BiLSTM-
CRF is
better

Reason
for Not
Correct

Palbociclib No 7 3 Not
Disease

advanced
solid
tumours

Yes 3 7 Partial
Match

MTD No 3 7 Not
Disease

HER2-ve
advanced
breast
cancers

Yes 3 7 Partial
Match

KRAS No 3 7 Not
Disease

DLT No 3 7 Not
Disease

PIK3CA No 7 3 Not
Disease

ER+ve
and HER2-
ve post-
menopausal
breast
cancer

Yes 3 7 Partial
Match

Mitomycin-
C

No 3 7 Not
Disease

NB No 3 7 Not
Disease

ULN No 3 7 Not
Disease

DLCO No 7 3 Not
Disease

central
nervous
system

No 3 7 Not
Disease

vascular ac-
cess

No 3 7 Not
Disease

the input text. Therefore, our model is more suitable to the
applications where it requires understanding of detailed context
to satisfy end users. Furthermore, our proposed model can be
fine-tuned on new clinical datasets towards better generalization
of the models.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel disease NER model
for clinical trial texts by using deep contextual embeddings
with relevant domain-specific features, word embeddings,
and character embeddings in a bidirectional long short-term
memory network-conditional random field (BiLSTM-CRF)
framework. Extensive experiments and analyses on a clinical
trial dataset and the benchmark NCBI scientific article dataset
show the effectiveness of the proposed model. In the future,
we will experiment with deep bidirectional transformer-based
language models (BERT) [24] to generate deep contextualized
embeddings of clinical trial texts.



Fig. 4: Clinical Trial Text (Trial #NCT02432963)

Fig. 5: Clinical Trial Text (Trial #NCT02389842))
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