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Sleep is the most important aspect of healthy and active living. The right amount of sleep at the right time
helps an individual to protect his or her physical, mental, and cognitive health and maintain his or her quality
of life. The most durative of the Activities of Daily Living (ADL), sleep has a major synergic influence on a
person’s fuctional, behavioral, and cognitive health. A deep understanding of sleep behavior and its relation-
ship with its physiological signals, and contexts (such as eye or body movements), is necessary to design and
develop a robust intelligent sleep monitoring system. In this article, we propose an intelligent algorithm to
detect the microscopic states of sleep that fundamentally constitute the components of good and bad sleep-
ing behaviors and thus help shape the formative assessment of sleep quality. Our initial analysis includes
the investigation of several classification techniques to identify and correlate the relationship of microscopic
sleep states with overall sleep behavior. Subsequently, we also propose an online algorithm based on change
point detection to process and classify the microscopic sleep states. We also develop a lightweight version
of the proposed algorithm for real-time sleep monitoring, recognition, and assessment at scale. For a larger
deployment of our proposed model across a community of individuals, we propose an active-learning-based
methodology to reduce the effort of ground-truth data collection and labeling. Finally, we evaluate the perfor-
mance of our proposed algorithms on real data traces and demonstrate the efficacy of our models for detecting
and assessing the fine-grained sleep states beyond an individual.
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1 INTRODUCTION

Sleep monitoring has been in the limelight of research due to the growing need for good-quality
sleep in a person’s day-to-day life. Moreover, sleep has a bi-directional relationship with the well-
being of a person (Saeb et al. 2017). Sleep disorders such as sleep apnea, chronic obstructive pul-
monary disease (COPD), chronic renal diseases, and various other medical conditions can manifest
as disruptions in sleep patterns and thus affect sleep quality (Parish 2009). Kline (2013) has defined
sleep quality as one’s satisfaction of the sleep experience, integrating aspects of sleep initiation,
sleep maintenance, sleep quantity, and refreshment on awakening. Sleep quality is highly corre-
lated to exhaustion, discomfort, depression, and lack of concentration during the day. The qual-
ity of sleep reveals intuitive symptoms caused by the underlying diseases. Clinical studies have
suggested that if the sleep quality is improved, the underlying symptoms of a patient might im-
prove, too. Monitoring sleep could help a physician diagnose the underlying condition. Clinically,
polysomnography (PSG) is used for sleep monitoring, which is also the “gold standard” for sleep
monitoring and diagnosis of sleep-related disorders. PSG captures multiple physiological parame-
ters such as electroencephalogram (EEG), electrocardiogram (ECG), electromyogram (EMG), and
electrooculogram (EOG) simultaneously, which makes it the best solution to diagnose sleep dis-
orders. PSG provides general sleep measures, such as total sleep time (TST) and sleep efficiency
(SE), and also detects specific sleep stages. Conducting PSG requires a specialized environment
like a sleep center or clinic, which makes it un-suitable for day-to-day sleep monitoring. Recent
advances in the field of sensor technology and wearables have led to the advent of various sleep
monitoring wearable devices such as Fitbit (2007), Actiwatch (Actigraph 2004), the BASIS watch
(Basis Band B1 2014), Misfit Shine, Withings Pulse O2, and so on. These devices are commercially
available in the market except for the BASIS watch (Basis Band B1 2014). These devices record
accelerometer data and heart rate to monitor sleep quality. Research indicates that Actiwatch and
Fitbit captures the TST and the SE well. In other words, it focuses on calculating the duration of
sleep, which gives a very good insight on someone’s sleep hygiene. However, the BASIS B1 band
(Basis Band B1 2014) classifies sleep stages (REM, light sleep, deep sleep) and provides the means
to identify patterns and triggers that are causing sleep disturbances (Mantua et al. 2016). The use of
wearable devices has also been proved effective for in-home sleep measurements and evaluations
(Kuo et al. 2017).

To evaluate a person’s sleep quality, it is important to detect the stages and micro stages of sleep.
Researchers view this problem as a classification problem and have been using machine-learning
algorithms on the data extracted from the wearable devices. Existing sleep monitoring studies have
been using supervised learning algorithms where they collect and label a set of training data with
pre-defined classes that the system aims to detect. Larger labeled training dataset with consistent
label information can help to build a more generalized classifier (Liao and Zhu 2014; Sordo and
Zeng 2005). One of the major challenges faced by researchers while addressing this problem is
the collection of the ground-truth information. Collecting ground truth without violating privacy
(using cameras) of the individuals is an extremely difficult task. It is also a herculean task for the
test subjects and other human annotators to annotate the data manually. Leveraging unsupervised
algorithm can help to eliminate the requirement for labeled data. However, drawing boundaries
between similar instances (with respect to properties) but belonging to different classes are diffi-
cult using unsupervised learning. The microscopic sleep states are very hard to differentiate based
on the accelerometer data as the signal patterns are quite similar for different states. For exam-
ple, subtle movements during sleeping and not sleeping while lying in the bed exhibits similar
signature pattern. Feedbacks from the users can help us acquire proper labels of data instances
for similar circumstances and help us to differentiate between them. By employing active learning
(AL) (Settles 2012), we can acquire feedbacks from the users for important data instances. AL can
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not only mitigate the manual effort needed for collecting ground-truth information but also re-
duce the training time. AL retrieves the most informative data instances from a pool of unlabeled
data instances and poses them as queries to the annotators. As a consequence, we only have to
label a handful number of instances. Several researches showed the effectiveness of AL in activity
recognition domain (Alemdar et al. 2011; Bagaveyev and Cook 2014; Hossain et al. 2017). Using
AL, we can improve our model incrementally based on the feedback provided by the annotators.
AL works in an online manner, where we receive a stream of instances and then form a pool from
which we select the single most informative instance. To get bulk label information, crowdsourc-
ing (Chittilappilly et al. 2016) has been exploited in different problem domains. It has been used
in activity recognition domain as well (Chang et al. 2017; Hwang and Lee 2012). We can collect
ground-truth information of unlabeled samples in a bulk that will help to improve our model.
In addition, identifying and classifying only pre-defined sleep stages is not sufficient for medical
diagnosis. Even though the current state-of-the-art wearable technology cannot replace the PSG
in clinical evaluations, obtaining accurate sleep stages has been the aim of every researcher who
works on this problem domain. Further, we have identified certain weaknesses in the literature,
such as patients suffering from nightmare disorder, muscle contractions have not been consid-
ered in any study. In our previous work on Sleep Well (Hossain et al. 2015), we proposed a sleep
monitoring model using an accelerometer-mounted wearable device to classify previously unseen
various sleep states and that further improves patients’ sleep hygiene by being able to pinpoint
the causes of sleep disturbances. We trained our model using supervised and unsupervised learn-
ing algorithms and identify the basic sleep states: Rapid Eye Movement (REM), non-REM (NREM)
sleep, awake, movement, getting up from bed, getting up, and sitting. In this article, we extend our
work and introduce a crowdsourcing model to collect large volume of labels and also introduce a
sleep scoring module.

Wearable devices have become common and accessible to people these days and researchers
are making them evolve by incorporating various sensors as attested by the new release of smart
watches such as Google Android Wear (Android Wear 2014), and so on. The world is moving
more towards wearable technology that has expedited a plethora of application domains rang-
ing from health care applications (Jonas et al. 2014) to sports (Daiber and Kosmalla 2017). In
this study, we have used two different wearable devices EZ430-Chronos (2013) and wActiSleep
BT (Actigraph 2004) worn on the waist. After collecting the data, we apply a variant of gradient
descent algorithm to build a classification model. Further, we apply importance-weighted active
learning to label the uncertain data points and also incorporate previously unseen sleep states.
Active learning improves the annotation effort greatly and improves the performance of classifi-
cation model. We also exploit crowdsourcing to collect bulk ground-truth information offline. To
discover abrupt changes on the data streams, increase the classification accuracy, remove noises,
and provide greater support for informativeness in active learning, we propose an online change
point detection algorithm. Finally, we show the results of our proposed algorithm using a pub-
licly available benchmark dataset (Borazio et al. 2014) that provides the sleep phases determined
by clinical polysomnography where the data were collected using a wrist-worn device. The main
contributions of the article are summarized below:

• We investigate several classification approaches and propose a gradient descent classifica-
tion model for recognizing the underlying microscopic context states associated with the
sleep disorders.

• We introduce an online change point detection–based classification approach to detect any
abrupt changes on streaming dataset for better microscopic sleep state classification, data
noise, and uncertainty reduction.
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• We develop an active-learning-based sleep monitoring model that extensively reduces the
data annotation effort and ground-truth data collection from the user personal space and
helps scale the model among a community of individuals.

• We demonstrate a crowdsourcing model using visual illustration and rank the workers
based on their feedback.

• We evaluate our model based on two real-world datasets, one with polysomnography result
along with the wrist-worn accelerometer sensor values from 42 subjects (Borazio et al. 2014),
other with general labeled data collected from 17 test subjects.

• We evaluate the quality of sleep using the Pittsburgh Sleep Quality Index (PSQI) (Buysse
et al. 1989) and the Webster scale (Webster et al. 1982).

2 RELATED WORKS

In medical studies, PSG is the major sleep study tool to diagnose a patient’s sleep quality (Chesson
et al. 1997). Polysomnography records biophysiological changes that occur during the sleep. Apart
from PSG, some other sleep study tools are the Multiple Sleep Latency Test (MSLT) and Mainte-
nance of Wakefulness Test (MWT) (Johns 2000). These diagnoses are cumbersome and need a lot
of prior setup; for example, PSG requires 12 channels requiring almost 22 wire attachments to a
patient. Obviously, this imposes a great level of discomfort to patients and researchers. Early works
(Oakley 1997) involving wearable devices to replicate the polysomnography results validated the
applicability of actigraphy in sleep monitoring. Sadeh (2011) provided further justification for the
use of actigraphy in sleep research. Van et al. proposed a model to support the feasibility of con-
tinuous home monitoring of sleeping trends using wearable devices (Van Laerhoven et al. 2008).
Recently, the authors of Kuo et al. (2017) proposed a wearable actigraphy device with a low sam-
pling rate for in-home sleep assessment. Several other works (Matsui et al. 2017; Purta et al. 2016;
Sathyanarayana et al. 2016, 2017; Sun et al. 2017) also ascertain the strength and simplicity of
wearable devices in sleep monitoring. The authors of Rofouei et al. (2011) developed a wearable
neck cuff system for monitoring physiological signals in real time. The authors of Nguyen et al.
(2016) have developed a lightweight and inexpensive in-ear wearable sensing system that can cap-
ture electrical activities of the brain and eye and facial muscles. Nguyen et al. (2016) have used a
supervised non negative matrix factorization algorithm to adaptively analyze the signals. A sleep
monitoring model using image analysis has been proposed in Nakajima et al. (2000), but it has
proved inefficient in case of low light conditions at night. Liao and Yang (2008) used near-infrared
cameras to overcome this challenge, but the images still created non-uniformity. A novel sleep
monitoring framework (LullaBy) to capture and monitor the sleeping environment using a mi-
crophone, light sensor, and motion sensor has been proposed in Kay et al. (2012). Yanzhi et al.
(Ren et al. 2015) put emphasis on the importance of breathing pattern while sleeping and the pro-
posed model captures the breathing sound using signal envelop detection on the acoustic data.
The proposed model can detect snore, cough, turn over, and get up using the acoustic features.
The authors of Zhang et al. (2013) proposed a real-time system to monitor the sleep conditions
where pulse oximeter is exploited to monitor user’s pulse oxygen saturation (SPO2) during the
sleep process.

Pressure bed sensors have been used to supervise the postures and movements of the users in
sleep (Foubert et al. 2012; Nam et al. 2016a). Though these methods are unobtrusive and do not
create discomfort to the users, but still it has not been streamlined due to its cost and deployment
issues. Hoque and Stankovic (2010) used fine-grained body positions from accelerometer data us-
ing WISP tags attached to the sides of a bed. A novel framework for pressure image analysis
to monitor sleep postures including a set of geometrical features for sleep posture characteriza-
tion and three sparse classifiers for posture recognition has been proposed in Liu et al. (2013).
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The authors of Nam et al. (2016b) have proposed a sleep monitoring framework comprising of
an accelerometer and a pressure sensor. Features pertaining to body motion, respiration, body
activity, and heart rate were extracted and the proposed framework fuses information from vari-
ous features and detects the stages of sleep. Odunmbaku et al. (2016) have proposed a combined
framework for fall and sleep monitoring of elderly people by hypothesizing that the acceleration
calculated from the accelerometer data will be in the range 0–1.5 m/s2. The authors of Velicu et al.
(2016) have used a custom-made accelerometer chip that streams data to an Arduino board. In
addition to the accelerometer, a ECG sensor is also used. Features such as Heart Rate and RR inter-
val were extracted, and Kushida’s algorithm-derived equation was used to differentiate the sleep
stages.

Sleep-related research are gaining attention due to the recent proliferation of low-cost easy-to-
deploy technologies based on mobile and ambient sensors and its large penetration in the market.
Commercial wearbale devices, such as Fitbit (2007), Zeo (2003), Actigraph (2004), Jawbone, Sleep
Tracker, and so on, have been used extensively these days for monitoring sleep and activities of
daily living (ADLs). iSleep (Hao et al. 2013) uses the built in microphone sensor of smartphone to
detect the events that are closely related to sleep quality like body movements, coughing, snoring,
and so on. The authors of Fahim et al. (2013) used the accelerometer sensor of the smartphone
to track the sleep duration and user movement patterns. Chen et al. (2013) proposed a passive
approach to track some stationary features, such as user silence, ambient light, phone usage and
charging, and so on, for monitoring sleep habits, and developed a mobile application BeWell (Lane
et al. 2011) for unified health monitoring. Bai et al. (2012) used the daily context information of a
user to define sleep quality. Sleep Hunter (Gu et al. 2014) used the accelerometer and microphone
sensors of the smartphone, a fine-grained detection of sleep stage transition for sleep quality mon-
itoring, and an intelligent wake-up call. Mimo Baby Monitor is a bodysuit for infants aged 0–12
and incorporates a respiratory sensor, an accelerometer sensor, and temperature sensor to mea-
sure the physiological signals, body movements, and temperature, respectively. These signals are
transmitted via bluetooth to an online data cloud and to the caretaker’s mobile (Mimo 2016). Using
several android apps like Sleep As Android, Sleep Time Smart Alarm Clock (Sleep Time Smart Alarm
Clock 2015), Sleep cycle, SleepBot, and so on, it is possible to monitor the quality of sleep. Other
commercial unobtrusive technologies like Beddit (2015) and Hello Sense (2014) can also monitor
sleep. Hello Sense also tracks the quality of the sleeping environment. Kaplan A (2001) proposed
to use change-point segmentation on PSG data to differentiate the macrostructural organization
of sleep. A point process–based novel model for the assessment of heart rate variability and res-
piratory sinus arrhythmia based on PSG data has been proposed in Citi L (2011).

Active learning has been investigated in the activity recognition domain in several works (Alem-
dar et al. 2011; Bagaveyev and Cook 2014; Hossain et al. 2017). Enamul et al. (Hoque and Stankovic
2012) proposed an activity recognition model AALO in single inhabitant smart home context us-
ing active learning. The authors of Hossain et al. (2017) applied active learning by expected error
reduction analysis in a smart home environment for classifying activities that include sleep. In
Sahami Shirazi et al. (2013), the authors propose a model for crowdsourcing sleep data. Yung-Ju
et al. proposed a mobile crowdsourcing model to annotate travel activities in real-world settings
(Chang et al. 2017). Hwang and Lee (2012) proposed a crowdsourcing framework that models the
combination of scene, event, and phone context to map the unseen audio data with activities.

In this article, we take a different approach and look into the fundamental problem of scaling
the sleep monitoring models beyond a specific individual. To realize this, first we analyze the
microscopic physiological contexts and psychological clauses behind a sound or bad sleep. We
investigate traditional classification algorithms to successfully detect those events and propose a
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Fig. 1. An architectural overview of the Sleep Well (Hossain et al. 2015) framework.

novel online change point detection–based method for enhancing the classification accuracy and
eventually help guide the design of a community scaling model using active learning.

3 OVERVIEW OF THE SLEEP WELL FRAMEWORK

Sleep is not just a dormant part of our lives; we remain very active and pass through several impor-
tant stages of sleep. Interference or disturbance in these states can cause impatience, drowsiness,
and lack of concentration during the regular activities of daily living. Therefore, to maintain good
sleep we have to sleep a certain amount of time in each of those sleep states. There are two main
types of sleep states:

• Non-Rapid Eye Movement (NREM) (also known as quiet sleep). NREM consists of three
states (stage-1, stage-2, stage-3).

• Rapid Eye Movement (REM) (also known as active sleep).

A complete and healthy cycle of sleep consists of a progression from states 1 to 3 before reaching
REM state, and then the cycle starts over again. If REM sleep is disrupted and the person wakes
up, then the person’s circadian cycle is disrupted. To complete the cycle the person will move
to REM state directly next time. Thus, it is very important to sleep a good amount of time each
day and maintain a good sleep cycle. REM sleep is considered active sleep, because in this state
people dream. If a person is having a nightmare disorder, then too often it is possible that he/she is
having problems completing the sleep cycle. In this article, we first focus on properly classifying
the sleep cycle into these finer states. We also propose to integrate some other broader intermediate
sleep states such as movement, getting up from bed, and getting up and sitting. These other states
would help to identify the casual and formal causes of sleep disturbance and sleep latency and
provide meaningful insights on designing scalable sleep monitoring technologies and automated
assessment methodologies.

3.1 Sleep Well Architecture

In Figure 1, we demonstrate our proposed framework. Our proposed framework consists of the
following logical components.
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Table 1. Features Used for Sleep Micro-States Classification

Name Definition

Time
Domain
Features

Mean AVG (
∑

xi ), AVG (
∑

yi ), AVG (
∑

zi )

Mean-magnitude AVG
√

x 2
i + y2

i + z2
i

Magnitude-Mean
√

x̄ 2 + ȳ2 + z̄2

Variance VAR (
∑

xi ), VAR (
∑

yi ), VAR (
∑

zi )

Co-Variance (Two-axis correlation) cov (xy ) ; cov (yz ) ; cov (xz )

Standard Deviation σx =

√∑
(x−x̄ )2

n−1 ; σx =

√∑
(x−x̄ )2

n−1 ; σx =

√∑
(x−x̄ )2

n−1

Frequency
Domain
Features

FFT-Magnitude m
(x )
j = |aj + bj i | ; m

(y )
j = |aj + bj i | ; m

(z )
j = |aj + bj i |

FFT-Energy
∑N

j=1 (m2
j )

N
for x, y, z respectively

• Feature Extraction: After collecting raw sensor data, this component preprocesses and
extracts the low level signal features as shown in Table 1 from the processed raw sensor
data (details in Section 4.1).

• Change Point Detection: After extracting features and analyzing the sleep data, we no-
ticed that a change point occurs in sleep transitions (transition from one stage to another;
for example, unconscious movement during sleeping, waking up, being restless in bed, etc.).
The importance of these change points has proven to be very effective, as it helps in remov-
ing noise in the data and to detect the exact point of the sleep transition. For example,
when a person gets up from the bed and starts walking, the accelerometer readings other
than sleep classes become noisy. Therefore, by identifying change points, we can partition
the data and have more fine-grained information for easing the training effort (details in
Section 4.2).

• Classification: At this stage we train our model using the features from processed raw
sensor data and build up our classification model to recognize the several intermediate sleep
states. We investigated an online gradient descent (Karampatziakis and Langford 2011) as
our classification algorithm. This is different from traditional gradient descent by dealing
with importance weights to collaborate with active learning and learning reductions. To
calculate the average loss during the classification process we propose to use squared loss
function (details in Section 4.3).

• Active Learning: After feeding the test data into our classification model and getting the
prediction, active learning helps to calculate the informativeness of each data point. If any
data point falls within an uncertain space and while predicting it is found to be the most
informative, then if the actual label of the point is provided it would have a more significant
impact on the classification model. This component then initiates a prompt for “query user
label” and gets the ground truth from the user. Subsequently, the labels are then used for
re-training and updating the model. This component helps to ensure better classification
accuracy with minimal user feedback. This also helps us to scale the sleep monitoring model
across multiple individuals. The input from the change point detection method strengthens
the active-learning query selection by asking the user to label the appropriate sleep state
transitioning step (details in Section 4.4).

• Crowdsourcing: For large-scale deployment, we apply crowdsourcing to reduce the
ground-truth collection effort. The problem with the existing crowdsourcing platforms is
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that there is no standard to evaluate the quality of the workers. In our model, we calculate
two parameters for each worker—reliability and awareness. Using these two parameters, we
rank the user and get the most out of our crowdsourcing platform (details in Section 4.5).

4 SLEEP WELL FRAMEWORK DESIGN

In this section, we describe in detail the design of our Sleep Well framework. We first discuss
several micro-states of sleep and feature extraction process. Next we discuss an online change
point detection algorithm to have a better handle on the microscopic sleep state classification
problem.

4.1 Sleep Event Detection and Feature Extraction

We extract low-level features using each of the three components of the triaxial accelerometer
signal to capture the aspects of movements while sleeping. We use both time and frequency do-
main features in our framework. As the user is not physically active while sleeping, very few
movements are involved, so we choose a lower sampling frequency. We extract features from data
using windows of 60 samples, corresponding to 1s of accelerometer data. From each window, we
calculate the features mentioned in Table 1. Time domain features help to differentiate between
dynamic and static movements. The frequency domain features help to identify patterns within
acceleration data, which aids in discriminating discrete movements and their intensities.

4.1.1 Feature Selection. We scale and make our model computationally effective by discard-
ing unnecessary features. We select the subset of features, best fit for our model by applying the
Restricted Forward feature Selection (RFS) algorithm (John et al. 1994). It was performed in two
steps. First, we applied the Forward feature Selection (FS) algorithm, which ranks the features in
decreasing order of their accuracy. The FS algorithm iterates through the feature space and mea-
sures the Leave-One-Out-Cross-Validation (LOOCV) error for each component in the feature space
{ f1, f2, f3, . . . , fN }. In case of traditional FS, after the first iteration, FS calculates the best individual
feature fi . In the next iterations, FS finds the best subset consisting of two components, fi and one
other from remaining N − 1 features. In the following iterations, FS ranks more features and eval-
uates the subset accordingly, so that after N iterations, the winner is the overall best feature set in
these N iterations. In the second step, we invoke the RFS to restrict the number of features to rank
at each iteration. After the first iteration, we consider only the first N /2 ranked features for the
following iteration. After adding another feature to the winner of the first iteration at the second
iteration, we consider the first N /3 components of the remaining ranks. RFS repeats this process
until it finds the best m feature sets. The difference between conventional FS and RFS is that RFS
considers only a part of the remaining ranked features, whereas FS considers all the features. Of
eight features, the feature selection algorithm chose four features (FFT-Magnitude, FFT-Energy,
Mean-Magnitude, and Co-Variance) that help to attain classification accuracy closer to using all
eight features.

4.2 Change Point Detection

Change point detection helps find the abrupt variations in the sleep data stream. While some
change points provide meaningful insights and some not, our motivation in this work is to find the
sleep transitions by calculating the change points (abrupt signal changes) and distinguish between
the important and unimportant changes. This is not only helpful to detect the sleep-related events
appropriately but also help remove noisy data points from the dataset. We develop a Bayesian
online change point detection– (Adams and MacKay 2007) based algorithm for finer sleep-related
event identification and online data noise reduction.
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We first partition the entire sleep dataset in different regions based on a run length (Adams and
MacKay 2007). Let, x1 : N = {x1,x2,x3, . . . ,xN }T denote the N data points observed over time T ,
which is divided into non-overlapping partitions. Consider if we find K change points and then
let the dataset of partitioned data be {ρ1, ρ2, ρ3, . . . , ρk } at time indices {t1, t2, t3, . . . , tk }, where by
definition t0 = 0 and tk+1 = N . The discrete probability distribution over a time interval ti to tj is
denoted by д (ti − tj ). Each partition ρt denotes a segment of the data at time t . The length of the
each partition or time since the last change point occurred is defined as “run length,” r . The run
length goes back to 0 if change point occurs; otherwise, it increases by 1 as follows:

rn =

{
0, if changepoint occurs at (n − 1)
rn−1 + 1, otherwise

.

The conditional probability that a change point occurs on time tk after the last change point at
time tk−1 is

P (tk |tk−1) = д(tk − tk−1), where 0 < k − 1 < n. (1)

We assume that the predictive distribution of a change point at any time instant t only depends
on the recent data. So the change points are assumed to follow Markov process. Thus the prior
probability of a change point at a time instant tk is dependent on the probability distribution of
the observed data over the time interval and the preceding change point,

P (tk ) =
k−1∑
i=0

д(tk − ti )P (tk−1). (2)

The change point detection algorithm finds the number of change points and their position by
calculating the posterior probability P (rn |x1:n ) and integrating it with the predictive distribution
P (xn+1 |xn ). We do this by calculating the joint distribution of the current run length and observed
data P (rn ,x1:n ),

P (rn ,x1 : n ) =
∑
rn−1

P (rn , rn−1,x1 : n )

=
∑
rn−1

P (rn ,xn |rn−1,x1 : n−1)P (rn−1,x1 : n−1)

=
∑
rn−1

P (rn |rn−1)P (xn |rn−1,xn−r : n )P (rn−1,x1 : n−1), (3)

where P (rn |rn−1) is the transition probability and P (xn |rn−1,xn−r : n ) is the data segment likelihood
probability. We calculate the transition probability using equation

P (rn |rn−1) =

{
h(rn−1 + 1), if rn = 0
1 − h(rn−1 + 1), if rn = rn−1 + 1

,

where h(x ) = д(x )/
∑∞

i=x д(i ). We calculate the posterior probability using Bayes’s rule:

P (rn |x1 : n ) =
P (rn ,x1 : n )∑n−1
i=0 P (ri ,x1 : i )

. (4)

We calculate the posterior probability of the run length at the time index that corresponds to a
new data sample. The pseudo code of this procedure is summarized in Algorithm 1.
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ALGORITHM 1: Change Point Detection

1: Initialize: P (r0) = 1
2: for Each new data point xn do

3: Calculate the data segment likelihood probability,
P (xn |rn−1,xn−r : n )

4: Calculate the transition probability, P (rn |rn−1)
5: Calculate the joint distribution, P (rn ,x1 : n )
6: Find the posterior distribution on current run length, P (rn |x1 : n )
7: Calculate the predictive distribution of xn based on previous observation. P (xn |xn−1)
8: end for

4.3 Classification

We classify the sleep states using an online gradient descent method that leverages the impor-
tance weight on streaming data samples. To build up our classification model accurately, we con-
sider other sleep contexts such as body movements, but most of the sample data points resemble
stationary states during sleep. Online gradient descent with importance weight aware updates
(Karampatziakis and Langford 2011) helps to overcome this limitation of data by assigning weight
to classes with lesser data points. The key principle here is as follows: The assignment of importance
weight h to a sample that make it appears like a regular example of h times in the dataset. We assume
C is our classification model and use a squared loss function to examine the consistency ofC . The
goal of our classification model is to minimize the loss function that reflects better accuracy. After
each iteration of gradient descent,C is not altered; rather, it is improved by adding an estimator h
to optimize the loss function. We assumey is the true label and p is prediction of our model, where
l (p,y) is the loss function as shown in Equation (5). At each step C is updated using Equation (6),

l (p,y) =
1

2
(y − p)2, (5)

Cm+1 = Cm + h(x ). (6)

Letw be the vector of weights, and the training set is a set of (xi ,yi ,hi ), i = 1, . . . ,T , where xt is a
vector of d features. For linearity, we assume p = wTx . Our goal is to assign w in such a way that
the model C converges to the optimized solution. Assigning weight to a data point (x ,y), h times
in a row have a cumulative effect with scaling factor k (h) as shown in Equation (7). This scaling
factor is defined by Equation (8), where η is the learning rate (Karampatziakis and Langford 2011).
At each iteration, this weight is updated accordingly to the loss function l . Our base classifier
C is a multinomial logistic regression model. Our proposed classification algorithm for finer non-
stationary sleep states detection is shown in Algorithm 2. We first initialize the importance weights
for each of the data instances and then train our classifierC . The weights of the data instances get
adapted based on the prediction made by our trained model,

wi+1 = wi − k (h)x , (7)

k (h) =
p − y
xTx

(1 − e−hηxT x ). (8)

4.4 Active Learning–Based Community Scaling

Our goal in this article is to scale the sleep monitoring model to a community of individuals. While
significant research has been done on sleep monitoring and assessment and intervention strategies,
lack of novel scaling algorithms prohibits the deployment, large-scale validation, and acceptance
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ALGORITHM 2: Importance Weighted Sleep Classification

1: Input: Extracted feature vectors from raw data with their respective labels.
2: Output: Trained model and updated importance weight of the data points.
3: Initialize: ∀iwi ← 0
4: Get the feature vector for data point xi

5: while true do

6: Train classifier C
7: Calculate the scaling factor k(h)
8: for i = 0 to N do

9: Calculate the weight wi for each xi

10: Update: wi ← wi − pi−yi

xT
i xi

(1 − e−hηxT
i xi )xi

11: end for

12: if l (p,y) converges then

13: break
14: end if

15: end while

of these technologies for healthy lifestyle, smart health, and independent living applications. In
this section, we investigate how active-learning-based machine-learning algorithms help build an
informative model in presence of minimally labeled datasets. We also depict how change point
detection–based time-series data analytics methodology helps reduce the data uncertainty and
guides the selection of the most informative query.

Active learning has been proved to be very effective when combined with supervised learning
when a large pool of unlabeled data is available. Though traditional passive learning takes the ini-
tiative to label the unlabeled data randomly, most of the data points that are selected randomly do
not ensure better classification. It is difficult to collect all of the sleep-related ground-truth infor-
mation from the user though by using the accelerometer sensor it is possible to broadly monitor
the user sleep behavior and the specific sleep duration. To collect more fine-grained details about
sleep, we train our proposed gradient-based classifier with the causes of sleep disruption (such as
waking up from nightmares, muscle cramp, etc). By applying active learning, we propose to collect
the labels of these informative data points so that our model can better classify the sleep stages and
conditions and help scale this model in the presence of a minimal amount of ground truth. While
applying active learning, one constraint is that we have to assure that the whole labeling process
does not become too intrusive. Crowdsourcing can help us overcome this constraint by collecting
a large amount of labeled data via arbitrary participants and providing aid in community scaling.

4.4.1 Query Selection. In the following, we briefly discuss the query selection approaches for
active learning:

• Query Synthesis: The active learner asks the human annotator for “label membership”
by using membership queries. In this approach, the learner generates instances rather than
samples from an existing unlabeled set. But the problem with this approach is that the
human annotator may have difficulty interpreting and labeling arbitrary instances.

• Stream-based selective sampling: Each unlabeled instance is drawn at a time from the
input source, and the learner may decide instantly whether to query the instance or not. As
we are using online classification algorithm and the data are processed in stream, we use
this sampling strategy for our active learner.
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• Pool-based sampling: Evaluates and ranks the entire collection of unlabeled data before
selecting the best query from a pool of instances.

4.4.2 Sampling Metrics. Different sampling metrics such as least confident, margin sampling, or
maximum entropy–based sampling are common in active-learning algorithms. We propose to use
the importance-weighted active-learning approach to build our community-scaled sleep monitor-
ing model (Beygelzimer et al. 2009). To decide which points are most informative, we first calculate
the utility measurements of unlabeled data points. Whether a data point xt will be queried or not
depends on the history of labels seen so far based on our change point detection, gradient-based
classification, and the identity of the point. If a change point is detected at data point xt at time
index tn , and the label of xt is inconsistent with the label of current run rn , then we invoke active
learning. A probability measure pt is maintained for each data point xt . A coin flip, Qtϵ {0, 1} with
E[Qt ] = pt , determines whether the data point will be queried or not. If the data point is queried
based on the past history, then we update importance weight by 1

pt
.

The active-learning algorithm maintains an effective hypothesis space Ht throughout the pro-
cess. Initially, Ht contains all of the hypotheses from global space H . The expected loss of a hy-
pothesis, hϵH at time T , is defined by Equation (9),

LT (h) =
1

T

T∑
t=1

Qt

pt
l (h(xt ),yt ). (9)

As it progresses, Ht becomes narrower by taking a subset, and ensuring that the factual loss of
Ht+1 is not much worse than the smallest loss, L∗t in Ht ,

Ht+1 = {h ϵ Ht : Lt+1 (h) ≤ L∗t (h)}. (10)

For each data point xt , the active-learning algorithm looks at the range of predictions and their
losses by hypotheses in Ht and sets the sampling probability to the size of this range,

pt = max
f ,дϵHt

max
y

l ( f (xt ),y) − l (д(xt ),y). (11)

If the range is too high above the rejection threshold, then the hypotheses disagree greatly with
each other. This certifies that the current prediction of xt lies in the uncertain region. The active-
learning algorithm then queries for the label to settle the uncertainty. Our proposed active-learning
algorithm for largely reducing the micro-sleep states annotation effort is shown in Algorithm 3.

Apart from using only predefined class labels, the user can introduce a new unseen class along
with indicative attributes with the help of active learning. While prompting for label of data point
xt , we also collect the reason for their choice of label in restricted number of words. We find specific
attributes from the provided reason and associate that attribute with the data point xt . For exam-
ple, if a user labels a data point as “getting up & sitting” and specifies the reason as “woke up from
nightmare,” then the Sleep Well framework extracts the attribute “Nightmare” from the provided
reason. Subsequently, we re-evaluate our classification model and apply a recursive classification
to associate the provided attributes to similar data points. This will help our model achieve micro-
scopic sleep state classification and finer evaluation for more elaborative and accurate diagnosis
of patients and eventually scale the model beyond an individual premises.

4.5 Crowdsourcing

Crowdsourcing has been proven to be an effective component for collecting labels in many
machine-learning applications. Large-scale data processing and annotating the data with multi-
ple annotators or experts alleviate the traditional process for gathering ground-truth data that are
lengthy, costly, and time-consuming. However, by using crowdsourcing, we accumulate a large
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ALGORITHM 3: Active Learning with Importance Weighted Sampling

1: Input: L = set of labeled instances {(x ,y)l }L
l=1

U = set of unlabeled instances {(x )u }Uu=1
A classifier model, Cθ

2: Output: Updated classifier model, Cθ .
3: Updated importance weight of queried data points.
4: for every instance in U do

5: set pt of instance xt using equation (11)
6: yt ←− Prediction of Cθ for xt

7: queried ←− False
8: \∗ Check if xt is a change point or not ∗\
9: if xt falls in between successive run rn−1 and rn using the posterior probability P (rn |x1 : n ) then

10: if yt is not same as the label of current run rn then

11: query label yt .

12: Lt ←− Lt−1 ∪ {xt ,yt ,
1

pt
}

13: queried ←− True
14: end if

15: end if

16:

17: if pt is greater than rejection threshold and queried = False then

18: query label yt .

19: Lt ←− Lt−1 ∪ {xt ,yt ,
1

pt
}

20: else

21: Lt ←− Lt−1

22: end if

23: Update the hypothesis space Ht

24: end for

25: Cθ = Best hypothesis from Ht

26: return Cθ

volume of labeled data, but we also increase the risk of introducing a lot of noisy and ambiguous
labels into our classifier. So it is necessary to identify potential reliable annotators and limit the
effect of introducing noisy labels. However, a major challenge in crowdsourcing is to verify the
provided labels. To tackle this, we propose to calculate the inter-annotator agreement using Fleiss’
Kappa statistics and identify the proper label for the data point of concern. In our model, we rank
the annotators based on their reliability and awareness of the feedback. Here reliability refers to
the correctness of the feedback, and awareness indicates the willingness of the annotators. For
each annotator, we maintain a probability measurement, δ i

tk
:

δ j

tk
= P (y j = k |y j = t ). (12)

In Equation (12), δ j

tk
denotes the probability that the annotator j provides the class label k to an

instance given that the true class label is t . Our goal is to learn the parameter δ j

tk
for each annotator.

Suppose there are R annotators. If the number of data instances is N , then we initialize a N × R
matrix M . Mi j denotes the label of instance i provided by annotator j. Given that yt

i is the true

label, for instance, xi , we assume that y1
i ,y

2
i , . . . ,y

R
i are independent. Let y = {yt

1,y
t
2,y

t
3, . . . ,y

t
N
}

be the set of true labels for the data instances. In our model δ is the reliability parameter. Our
goal is to learn an optimal estimator ŷ of y to minimize the imposed error by provided noisy data
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points. By taking Beta prior on the reliabilities, we can formulate a maximum likelihood estimator

δ̂ of δ using Equation (13). By taking y as a hidden variable, we can estimate δ̂ using expectation
maximization (Raykar et al. 2010),

δ̂ = arg max
δ

log P (δ |M ) = arg max
δ

log
∑

y

P (δ ,y |M ). (13)

We calculate the awareness of a certain class c , ac
j by taking the percentage of data of class c

labeled by the jth annotator. We assign weightwc
j to each annotator by taking the product of their

respective reliability of a certain data instance i and awareness. Based on the weight for each class,
we rank the annotators with respect to each class,

wc
j = δ j

tk
ac

j . (14)

To verify our estimator, we calculate the interuser agreement by using Fleiss’ Kappa statistics.
The kappa k is defined in Equation (15). In Equation (15), 1 − P̄e gives the degree of agreement that
is achievable, and P̄ − P̄e gives the degree of agreement actually achieved. If the annotators agree
with each other, then k = 1, and if not, then k ≤ 0,

κ =
P̄ − P̄e

1 − P̄e

. (15)

Let n be the number of annotation per annotator, and let k be the number of classes. Then ni j

represent the number of annotators who assigned instance i to the j class. First calculate Pj , the
proportion of all assignments that were to the class j:

Pj =
1

Rn

R∑
i=1

ni j , 1 =
1

n

k∑
j=1

ni j . (16)

Now calculate Pi , which denotes how many annotator pairs are in agreement, relative to the
number of all possible annotator pairs.

Pi =
1

n(n − 1)

k∑
j=1

ni j (ni j − 1)

=
1

n(n − 1)

k∑
j=1

(n2
i j − ni j )

=
1

n(n − 1)

⎡⎢⎢⎢⎢⎢⎣

��
�

k∑
j=1

n2
i j
�	


− (n)

⎤⎥⎥⎥⎥⎥⎦
.

(17)

Now we can measure P̄ , which is the mean of all Pi and P̄e using Pj :

P̄ =
1

N

N∑
i=1

Pi

=
1

Rn(n − 1)
��
�

R∑
i=1

k∑
j=1

n2
i j − Rn

�	


.

(18)

P̄e =

k∑
j=1

p2
j . (19)

In Figure 2, the architecture of our crowdsourcing platform is shown.
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Fig. 2. An architectural overview of crowdsourcing.

5 SLEEP WELL FRAMEWORK EVALUATION

To evaluate our framework, we focus on the following specificities: (i) the performance of different
classification algorithms in comparison to our classification approach, (ii) cross-user performance
by building model with a user’s sleep model and testing with someone else’s model, (iii) perfor-
mance of our framework using different wrist-band devices with accelerometer sensor, (iv) impact
of active learning on our model, and (v) precision of classifier when sleep attributes are introduced
in the model by active learning.

5.1 System Implementation

We have implemented and tested our model by using two separate devices, wActiSleep-BT (Acti-
graph 2004) and EZ430-Chronos (2013), and both of these devices contain a 3-axis accelerometer
sensor. The EZ430-Chronos device also has heart monitor, pressure, and temperature sensors. We
collected raw accelerometer data from both of these devices using API provided by the manufac-
turers. We implemented our own software to extract raw data using the C# programming language
and then extracted the features using the python numpy library. We sampled the data at 60Hz fre-
quency. For importance-weighted classification and active learning, we used the machine-learning
tool Vowpal Wabbit (2016).

5.2 Ground-Truth Collection

We asked the users to log their sleep habits using a sleep diary to correctly label the data points.
We asked the participants to note down their sleep routines (preferred sleeping postures, regular
hours of sleep, light intensity and sleep latency) each day of the experiment. There were many
challenges involved while collecting the ground truth from the sleep diary. For example, consider
two different scenarios, (1) the user is awake & lying and (2) awake & not lying. In case of stationary
states (when the user is not moving but he or she is either lying or just sitting in the bed), the
accelerometer readings are almost identical. Also when a user gets up in the middle of the night and
performs some activities (checking his or her phone, going to bathroom, etc.), there are movements
involved. It was challenging to identify which movements were during sleep and which were due
to some activities. The user was unable to correctly state the reason of movements in some cases. In
Figures 3 and 4, we can see two different movements (awake and standing, awake and lying). The
user went to bathroom at 2:03 AM and came back to bed at 2:12 AM. However, at 3:03 AM, the user
was moving while lying. Therefore, to assist the ground-truth collection, we investigate a posture
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Fig. 3. Accelerometer reading when standing. Fig. 4. Accelerometer reading when lying.

Fig. 5. Raw accelerometer data from dataset 5.3.1. Fig. 6. Raw accelerometer data from dataset 5.3.2.

Fig. 7. Timestamped feature value. Fig. 8. Detected change points associated to

Figure 7.

analysis using the inclination of the accelerometer. We observe that when perpendicular to gravity,
accelerometers are more sensitive to small changes in inclination, but as the inclination increases,
the accelerometer becomes less sensitive to it. To resolve this issue, we propose to use two axes.
As we are using wrist-worn bands, inclination of axes y and z are used to define the posture of
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Fig. 9. Inclination measurement accuracy.

θy = tan−1

(
y

√
x2 + z2

)
(20)

θz = tan−1 �
�

z√
x2 + y2

�



(21)

the user. The z axis measures the direction of the gravity in the horizontal position, so coupling
with the inclination of x axis help infer the posture of the user. We calculate the inclination of the
device by using Equations (20) and (21).

We faced a challenge to define the threshold values for these inclinations as different users
have different sleeping postures. We experimented with different sleep positions (On side, Face
down, On your back) and calculated the inclination of the device in those positions. We ran the
J48 decision tree classifier on the postural data. Based on the results of the classifier, we defined
the inclination threshold for different states, such as if θy < 16◦, then the user is standing, and if
16◦ < θy < 61◦, then the user is considered to be sitting, and for θx > 61◦ the user is considered
to be lying. Figure 9 shows the results of our posture calculation using the inclination method.
We also installed couple of motion sensors in the environment to strengthen our ground-truth
collection. We put two motion sensors (Aeotec Multisensor (2006)) near both sides of the bed and
another one mounted near the user’s body when he/she is sleeping. The sensor mounted near
the body captures the motion when the user is in the bed while the other two on the sides of the
bed monitor when the user is out of the bed. While extracting information from the sensor, we
assumed that consecutive two data points from the sensors mounted on the sides correspond to
getting in and then getting out of the bed. These multisensors also have built in light sensor, so we
can detect the light condition in the sleeping environment using these sensors. Now we are able to
validate the movements of the users and calculate the overall time he/she remained out of the bed
efficiently by consolidating the inclination measurements, motion sensor data, and data from the
sleep diary. We were able to label most of the data points correctly and remove noisy data points.

5.3 Datasets

We use real data traces collected from ≈60 users to validate the performance of our Sleep Well
framework. We also compare our results for data from different body position.

5.3.1 Dataset with Clinical Ground Truth. We evaluate our model using a publicly available
benchmark dataset from Technische Universität Darmstadt (Borazio et al. 2014) which provides
sleep phases determined by clinical polysomnography. The dataset consists of timestamped raw
acceleration data collected using wrist-worn data logger at a sampling rate of 100Hz and includes
the sleep stages (movements, awake, NoREM 1-3, REM, unknown) from 42 lab patients. The trend
of raw accelerometer reading in this dataset is shown in Figures 3–8. The sampling frequency is
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Fig. 10. Precision, recall and F1-measurement for

inter user classification (dataset 5.3.1).

Fig. 11. Precision, recall and F1-measurement with

inter user classification (dataset 5.3.2).

Fig. 12. The figure illustrates the effect of various sampling frequencies of the raw accelerometer data. The

upper figure depicts raw accelerometer data at 100Hz frequency and the bottom figure at 25Hz frequency.

The highlighted portion in the upper figure indicates a very subtle movement while sleeping.)

set to high due to the nature of the activities. Different sleep stages (NoREM 1-3 and REM) actually
refer to macro activity, sleep. To understand the difference between movements pertaining to dif-
ferent sleep stages, it is necessary to capture data at higher sampling frequency. We demonstrate
the effect of high and low sampling frequency in Figure 12. The spike in the highlighted box in the
upper figure indicates a very subtle movement while the user is sleeping. However, when down-
sampling the data to 25Hz (bottom figure) we experience no such spike and we lost the movement
information. As a result it is necessary to choose a sampling frequency according to the definition
and sensitivity of the classes. There are seven different classes in this dataset among which ma-
jority of the data points are labeled as unknown (51%) and awake (24%) with only a few important
data points that affect the classification model. After inspecting the dataset, we note that the value
of different data points of different classes were very close that imposes bias in our classification
model. We handle this bias by assigning less weight to abundant data points (unknown and awake)
and improve the classification process and accuracy.

ACM Transactions on Interactive Intelligent Systems, Vol. 8, No. 3, Article 22. Publication date: July 2018.



An Active Sleep Monitoring Framework Using Wearables 22:19

Fig. 13. The trend in intra user classification accuracy with varying population size.

5.3.2 Actigraph and Chronos Dataset. We collected sleep data using wActiSleep-BT and EZ430-
Chronos at a sampling rate of 60Hz from 17 participants for two weeks. Of 17 participants (11 males
and 6 females), 13 were graduate students, 3 were working professionals, and 1 was unemployed.
We conducted a survey beforehand to know about their sleep routine. Using the survey, we gath-
ered information regarding sleep time, average sleep hour, movement frequency on a scale of 1–5
and existing sleep disorders. We then selected a set of participants with diverse sleep routine and
disorders. We asked the participants to put on the sensor when they go to the bed. The participants
were also instructed to maintain a log the timing of getting up and getting in bed. The participants
put the sensors on their waist using a belt. We noticed that wActiSleep-BT device has better sensi-
tivity due to slight movements rather than EZ430-Chronos that help differentiate between actual
movements and sleep patterns from a user. Almost 65% data points of this dataset belong to Sleep
class and 22% to Awake class. As a consequence, our dataset is also imbalanced. Figure 6 shows the
raw readings from ActiSleep device.

5.4 Evaluation Methodology

5.4.1 Supervised Learning. We carried out our experiments with 17 participants (11 males and
6 females) over two weeks where each participant has provided data for 8–10 days. We validated
that 17 is a statistically significant population size using t-test. The trend in training accuracy (intra
user) with respect to size of the population is shown in Figure 13. We see that after increasing the
population size more than 17, the accuracy is not changing significantly. We proved our hypothesis
that it did not happen by a chance by conducting a t-test using dataset 5.3.1. We conducted t-test
with varying population size and received p-value of 2.021 with 95% confidence interval. Although
we get a bit more accuracy if we increase the population size (74%), due to training time and
resource consumption, we chose 17 as the optimum population size. Of these 17 participants, 7
wore the EZ430-Chronos device and other 10 put on wActiSleep-BT. We split each dataset into
two parts, one for training and other for testing. To overcome the class imbalance problem, the
importance weight play a significant role. We look at the confusion matrices of classifying two
classes (Sleep, Awake) in Tables 2 and 3. It is evident that due to class imbalance, a lot of the
Awake class instances are inferred as Sleep if importance weighting is not used. We applied our
classification models on the datasets mentioned in Sections 5.3.1 and 5.3.2.

Intra User Classification. We tested different classification models with our proposed Online Sto-
chastic Gradient Descent (OSGD) method: Support Vector Machine (SVM), Multilayer Perceptron
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Table 2. Confusion Matrix

of Sleep–Awake classifier with

Importance Weighting

Sleep Awake
Sleep 91% 9%

Awake 14% 86%

Table 3. Confusion Matrix

of Sleep–Awake Classifier without

Importance Weighting

Sleep Awake
Sleep 80% 20%

Awake 51% 49%

Table 4. Accuracy (Dataset: 5.3.1)(%) (Intra User)

OSGD SVM MP DT LR LB RF
Unknown 98.76 96.50 85.80 99.01 98.93 98.37 97.95

Stage-1 69.45 44.44 60.36 58.57 47.63 61.82 70.40
Stage-2 70.29 41.02 58.54 59.09 48.18 68.46 71.87
Stage-3 68.36 39.15 63.36 48.24 49.33 60.77 63.94

REM 58.22 37.28 49.11 41.55 38.31 41.03 59.10
Awake 74.78 68.12 72.10 70.01 64.96 66.90 72.73

Movement 72.59 69.31 62.88 70.66 65.60 63.27 71.25
Average 73.20 56.54 66.13 63.87 58.99 65.80 72.46

Table 5. Accuracy (Dataset: 5.3.2)(%) (Intra User)

OSGD SVM MP DT LR LB RF
Sleep 87.79 87.98 80.8 84.01 73.32 76.63 88.52
Awake 77.9 71.35 75.66 67.91 73.56 70.21 75.69
Movement 76.25 74.87 68.32 68.41 70.27 72.11 75.14
Getting up & sitting 72.11 64.58 67.39 68.11 64.85 69.15 70.02
Getting up from bed 78.21 69.89 70.36 70.1 71.19 62.39 73.39
Average 78.45 73.73 72.50 71.70 70.63 70.09 76.54

(MP), LogitBoost (LB), Random Forest (RF), Logistic Regression (LR), and Decision Tree (DT), using
different user’s dataset. The accuracy of different classification model using one of the subject’s
dataset from each dataset is shown in Tables 4 and 5. The average accuracy of OSGD is 73.20% for
a patient from dataset 5.3.1 and 78.45% for dataset 5.3.2. This attests that consideration of inclina-
tion and sensor data and using it to correct labels in dataset 5.3.2 help yield better classification
results. Also the results indicate that putting the device on the waist endows better accuracy. We
investigated this disparity and found that hand movements are more abrupt and arbitrary, which
results in more confusing data points. Also very subtle body movements are difficult to distinguish
when using a wrist-worn accelerometer.

The major accuracy improvement was noticed for inferring the micro sleep state. Although
individual accuracy for classes Stage 1, Stage 2, and REM for the Decision Tree (DT) classifier
was better in dataset 5.3.1, the average accuracy of inferring sleep states (sleep stages 1–3, REM) is
66.58% which is better than the average of DT classifier (66.32%), while for our dataset we achieved
87.79% accuracy.

Cross User Classification. It is important that a classification process will not only recognize
the sleep states of an already seen user but also help generalize the classification for new users.
We cross validated our approach with the inter user classification model. We trained our model
using 20 patient’s data from dataset 5.3.1 and tested the trained model with remaining 22 patients’
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Fig. 14. Trend of loss for inter user classification

in different datasets.

Fig. 15. Different active learning techniques for

dataset 5.3.1.

data. The average accuracy was 69.79%. With data from dataset 5.3.2, we achieved 75.46% overall
accuracy. Figure 10 and 11 shows the results in Precision (percentage of times that a recognition
result made by the model is correct), Recall (percentage of times that a sleep state is detected), and
F1-measurement (combination of both recall and precision) for both the datasets. Figure 14 also
shows the trend of loss for different datasets.

5.4.2 Active Learning Experiments. In addition to supervised learning, we evaluate how we can
improve the classification result using active learning with minimal user feedback. We have dis-
cussed our active-learning algorithm in Section 4.4. We sampled both the datasets with a window
of 60s on accelerometer data. Each sample is a feature vector with 16 dimensions. The initial labeled
dataset L1 consisting of 135,089 samples (from dataset 5.3.1) and L2 consisting of 42,000 samples
(from dataset 5.3.2) are provided to the individual classifierC1 andC2 for training. Then unlabeled
dataset U1 of 510,113 (dataset 5.3.1) and U2 of 121,147 samples (dataset 5.3.2) are used to test the
classifier C1 and C2. The samples are provided sequentially with respect to timestamp.

The uncertain data points, meaning the points that the classifier was unable to classify, are
queried in accordance with our active-learning algorithm (3). We calculated the loss at each phase
after a data point is queried and the model is re-trained. We compared our result with randomly
selected samples for labeling. To further assist the active-learning process, we validated the results
with our change point detection (CPD algorithm discussed in Section 4.2). When a change point
is detected in the dataset, we cross validated the change points with the classification result with
respect to the timestamp. Figures 7 and 8 plot the association of change points with timestamped
accelerometer data points. If the label of the sample is not consistent between each of the models,
then we imposed active learning and queried the data point. Initially, with L1 and L2, we note that
the average classification accuracy is 63.8% and 70%. We applied importance-weighted active learn-
ing and see that the model converged faster with change point detection; 86,719 samples (17% of
total samples) fromU1 and 8,843 samples (7.3% of total samples) fromU2 were queried for the model
to converge in presence of CPD that helped achieve 72% (dataset 5.3.1) and 76.89% (dataset 5.3.2) ac-
curacy, while with randomly selected data points 68% and 73% accuracy was observed. Figures 15
and 16 shows the change in loss with random sampling, active learning with and without CPD
techniques with different datasets. We see that active learning with CPD outperforms the other
strategies. In dataset 5.3.1, we notice from Figure 15 that the change in loss is irregular. After ana-
lyzing dataset 5.3.1, we found out that due to the presence of noisy data points the loss increased.
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Fig. 16. Different active-learning techniques for

dataset 5.3.2.

Fig. 17. Different attributes classification result in

getting up & sitting partition.

Fig. 18. Visual illustration of

sensor activation.

Table 6. Fleiss Kappa Score (Inter user agreement)

Class Kappa Z-Score P-Value
Sleep 0.468 2.8 0.167

Awake 0.423 5.97 0.013
Movement 0.447 4.52 0.00678

Getting up & Sitting 0.537 2.298 0.051
Getting up from the bed 0.835 1.256 0.0006

5.4.3 Crowdsourcing Experiments. During this process, we faced a challenge regarding what
kinds of data to show that can reflect the sleep classes. As audio, video, or image data violate the
privacy of the user so we had to come up with a different methodology rather than traditional
image-based crowdsourcing. We presented some semantic information from the users sleeping
habits (regular hours of sleep, sleep latency, posture, average number of times the user gets up
at night, how much the user moves on average in percentage and light condition) and a visual
illustration of sensor activation (discussed in Section 5.2) to the annotators. In Figure 18, we show
an example of visual illustration. The double circled objects represent sensors, and the activation
is marked by red color. In this example, the sensor mounted near the head and the sensor mounted
near the right side of the bed are activated as the user was getting up from the bed. Ten annotators
participated in our crowdsourcing experiment with a dataset containing 10,000 data instances from
dataset 5.3.2. In Table 6, the kappa coefficient, z-score, andp-value for individual classes are shown.
The kappa coefficients of sleep, awake, and movement classes are considerably low than other two
classes. This was due to the nature of these activities and sensitivity of the motion sensor. During
our experiment, we have seen that movements with smaller intensities while in sleep or awake is
sometimes not captured by the motion sensor. As a result, most of the annotators defined those
data instances as sleep. However, movements with higher intensities while sleeping are annotated
as awake, movement, and getting up & sitting. Also, the first three activities are related to the state
lying. As a result, the posture information using inclination measurements did not help much. For
getting up from bed, the visual illustrations were less noisy and easier to depict, and as a result the
inter user agreement score is much better.
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5.4.4 Introduction of New Unseen Class and Attributes. A user is able to personalize the model
by introducing new unseen classes and attributes with the help of active learning. We simulated
our active-learning algorithm by introducing new class labels in the classification model. While
collecting the query label we also asked for the reason behind choosing the label from the annota-
tor, so that we can look for important indicators for the clinicians. We restricted the length of the
reason in five words. For example, if a sample is queried and the annotator labels the sample as
getting up and sitting, then he or she can also state the reason for labeling the data such as muscle
cramp, stress or anxiety, nightmare, and so on, which are microscopic events for sleep disruption.
We applied a nested classification by considering these microscopic events as class labels. After
classifying using our defined general class labels, we partitioned each class label data and applied
our classification algorithm in separate partitions again by considering the provided attributes as
labels. For example, let us assume an user states reason “A” as the cause of sleep disruption or any
kinds of changes in the pattern. Our framework then partitions the data, and the number of parti-
tion is equal to the number of class labels (in our model it is 5), and, as a result, in each partition the
data points are of same class. The Sleep Well framework then performs a classification on separate
partitions with class label “A.” This nested classification process ascertains the microscopic sleep
events. The precision, recall, and F1 score of recorded attributes (muscle cramp, heatburn, stomach
ache, stress, anxiety, and nightmare) for the parent class “getting up and sitting” are presented in
Figures 16 and 17.

6 SLEEP SCORING

Various sleep scoring models have been proposed over the years, like PSQI (Buysse et al. 1989), in
Webster et al. (1982), the Sleep Quality Scale (Cole et al. 1992; Sadeh et al. 1994; YI et al. 2006), “ZQ”
of Zeo (2003), which takes in consideration total sleep, deep sleep, REM sleep, wake time, and the
number of times woken up. The Webster et al. (1982) and Cole-Kripke (Cole et al. 1992; Jean-Louis
et al. 1997; Sadeh et al. 1994) models use the knowledge of actigraphy. In actigraphy, the presence of
movements indicates wakefulness and the absence of movements indicates sleep. Sleep efficiency
is then calculated by taking the ratio of time slept versus total time spent in bed. PSQI (Buysse et al.
1989) is designed for assessing long-term sleep quality. PSQI contains 19 questions regarding the
habit of sleep and the events that cause sleep disruption. The habit of sleep includes sleeping time,
sleep latency, sleep duration, and wake up time. From our classification results, we can easily find
out the trend of user’s sleep (sleeping time, wake up time, sleep duration). In our framework, we
are collecting the reasons for sleep disruption using active learning, which also help in answering
the questions related to trouble in sleep. In our work, we calculate the sleep–wake cycle of the
user using the Cole-Kripke (Cole et al. 1992) algorithm to verify the sleep duration and try to find
answers to as many questions as possible from PSQI (Buysse et al. 1989).

In the Cole-Kripke algorithm, the sleep–wake state at any epoch is calculated by considering
the previous 4 minutes’ and next 2 minutes’ actigraphy information. The model is defined by the
following equation:

D = P (W−4A−4 +W−3A−3 +W−2A−2 +W−1A−1 +W0A0 +W+1A+1 +W+2A+2). (22)

Here P denotes the scaling factor, andW−i ,W0, andW+i are the weighting factors for the previous
minute, the present minute, and the following minute. The activity scores for the previous, present,
and following minute are expressed by A−i , A0, and A+i . If D < 1, then the state is considered to
be sleep and for D ≥ 1 the state is wake. We will adapt the solution for these parameters proposed
in Cole et al. (1992) developed by Webster et al. (1982). The rule of assigning scores are as follows:
(a) after 4 minutes scored as wake, next 1 minute is also scored as wake, (b) after 10 minutes scored
as wake, the next 3 minutes are also scored as wake, (c) after 15 minutes scored as wake, the next
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Fig. 19. Activity score for times-

tamps between 12:00 AM and

6:00 AM.

Fig. 20. Calculated D from cor-

responding activity score using

Equation (23).

Fig. 21. Sleep–wake estimation

from calculated D between 12:00

AM and 6:00 AM.

4 minutes are scored as wake, (d) 6 minutes or less surrounded by at least 10 minutes scored as
wake (before and after) are also scored as wake, and (e) 10 minutes or less surrounded by at least
20 minutes scored as wake (before and after) are also scored wake. Then regression was applied
for solving Equation (20) using the scores calculated from dataset 5.3.1. After fitting the values in
Equation (20), we get the following equation:

D = 0.00001(404A−4 + 598A−3 + 326A−2 + 441A−1 + 1408A0 + 508A+1 + 350A+2), (23)

where activity scoreA denotes the number of epochs with movements in that particular minute. We
calculate the state of each minute using 21 and find the number of minutes the user was sleeping.
After that we calculate the following components of PSQI:

(1) We identify the usual time to go to bed at night from the user log diary and validate it
with the mounted motion sensor firing sequence. Our framework maintains two separate
variables for the motion sensors mounted on the sides of the bed, r and l . On firing of

the sensors, we increase the variables. If |r−l |
2 is even, then the user got in and then got

out of the bed, and if odd, then the user is in in the bed.
(2) Usual slack time for the user to fall asleep by subtracting the timestamp of answer (a)

from the usual time the user fell asleep. Additionally, we record the slack time for each
day.

(3) Usual time the user gets up in the morning.
(4) Hours of sleep at each night.
(5) We calculate the number of days the user could not sleep within 30 minutes using the

information in (b).
(6) How many times the user woke up in the middle of the night or early morning using our

classification model and the motion sensor data.
(7) How many times the user got up to use the bathroom using active learning and attribute

detection (Section 5.4.4).
(8) Cannot breathe comfortably using active learning.
(9) Feel too cold and too hot using active learning.

(10) Have bad dreams or nightmare using active learning.
(11) Have pain using active learning.
(12) Other reasons for the sleep disruption using active learning.

Rest of the components of PSQI are subjective that we could not measure using our framework.
But we are able to automate most of the components with proper validation. Queries 8–12 are
not posed in real time. We pose these queries later the following day. In Figures 19, 20, and 21,
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Fig. 22. Histogram of PSQI scores calculated using

actigraphy.

Fig. 23. Histogram of PSQI scores using

PSQI questionnaire.

the activity score, D score, and sleep–wake state estimation from the D score is plotted. From
the figures, it is visible that the participant was awake thrice. We verified our findings using the
participant’s log diary, where it was stated that at around 1:30 AM and 3:45 AM he woke up to use
the restroom. Around 2:45 AM we see a spike in accelerometer data and the motion sensor near
the head also fired, but the participant did not mention anything about staying awake during this
time. After calculating the PSQI components, we calculate the final PSQI score. Figures 22 and 23
shows the frequency distribution of PSQI scores using actigraphy and the originial questionnaire
for 17 participants, respectively. Although the distributions look quite similar, the population size
of 17 is not statistically significant. We want to investigate and prove our hypothesis with a larger
population size in the future.

7 DISCUSSIONS AND FUTURE DIRECTIONS

In the current version of the Sleep Well framework, we did not discuss individual sleep scoring
based on our sleep state classification. Most of the sleep scoring models like the PSQI (Buysse
et al. 1989) or the Webster scale (Webster et al. 1982) do not consider the habit of an individual’s
sleep. In our experiment, we found that one participant was moving frequently while sleeping and
woke up 2 or 3 times at night to use the bathroom. Even if the participant had disrupted sleep
according to our data, according to the participant’s feedback he had a sound sleep. We look for-
ward to investigating the sleep habits of individuals (like movements and getting up frequently)
using change point detection in the future and devising a dynamic sleep scoring module. Differ-
ent components of PSQI such as PSQIDURAT (duration of sleep), PSQIDISTB (sleep disturbance),
PSQILATEN (sleep latency), PSQIDAYDYS (day dysfunction due to sleepiness), PSQIHSE (sleep
efficiency), PSQISLPQUAL (overall sleep quality), and PSQIMEDS (need meds to sleep) can be pre-
sented in the form of a tree data structure, where each component represents a node in the tree.
The outcome of the diagnostic procedures obtained from the set of questions being asked can
help calculate the average score of each of the components and can be assigned as a conditional
statement to each of the branch.

In the current version of our framework, we invoke the change point detection only in the case
of active learning. As a future research direction, it is possible to combine change point detection
with a classification model to perform a more thorough time series analysis. For example, abrupt
sleep disturbances (muscle cramp, nocturnal panic attacks, etc.) cause sudden changes in the data
points. It would be beneficial to capture these subtle changes and correlate the run length with the
classification process.
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In the current implementation, we considered only the inclination of the device to infer the
user’s current posture. Therefore, another future direction is to integrate locomotive activity (such
as sitting, standing, walking, etc.) recognition with our framework to improve the noise reduction
methodology. The orientation and the positioning of the devices affects the performance of the
model as well. We would like to investigate the transfer-learning algorithm to address this issue in
our future work. For active-learning experiments, we assumed that the user will always provide
the correct label. In real life, it is possible that the user may provide the wrong label or leave it
blank. Also, while collecting the attributes of sleep disruption causes, we are using a hard coded
attribute list. If the labeler provides different attributes, then the model fails to assimilate them. In
such cases, imperfect annotation handling and optimal querying can be further studied to improve
the performance of active learning. This is also applicable for crowdsourcing the sleep data for
malicious user identification. The visual illustration provided while applying crowdsourcing was
also not able to provide an accurate representation in some cases. Although we provided semantic
information about the user’s sleep routine, it did not improve the annotation performance, as most
of the annotators ignored the information and provided feedback based on the visual illustration
only. Without the ground-truth information, this runs the risk of introducing noisy instances into
the model. We want to investigate whether adding other modalities like a highly sensitive motion
sensor and smart home data (appliance usages) can improve the performance of the annotators
in the future. In our current state, we collect the reason of the label from the user and extract
the important microscopic attributes from the provided reason. For the future, theis feedback can
be further leveraged to inspect the nature of various sleep disturbances at the microscopic level,
which will greatly help in longitudinal sleep assessment and diagnoses.

7.1 Reliability of Sleep Technologies

The growing pervasiveness of off-the-shelf sensor-rich wearable and mobile devices in our daily
lives presents the convenience to capture the underlying contextual information of activities of
daily living inconspicuously. However, the variations of these commercial devices with respect to
device manufacturers, CPU powers, and OS types pose serious challenges in the applicability of
these technologies in the same settings across different domains. The major type of heterogene-
ity that is evident is the different sampling frequencies of these devices (Stisen et al. 2015). Also,
most of the off-the-shelf devices are designed to be appropriate for clinical studies. In our exper-
iments, the two devices that we used (Actigraph and Chronos) are research devices that provide
much higher sampling frequency than the commercially wearable devices. Although the use of
these devices in clinical studies is not reliable, these modalities can compliment clinical study by
providing extra evidence. For example, we have shown in Section 6 that we can provide further
evidence for some of the questions that the participants are supposed to answer for the PSQI test
(Buysse et al. 1989). However, we cannot always answer the subjective aspect of clinical studies
using actigraphy, as discussed in Section 6. Lockley et al. (1999) also showed that by comparing the
actigraphic and subjective measurements of sleep. They found that actigraphic sleep monitoring
is inferior in calculating the sleep–wake cycle, sleep latency, duration of night awakenings, and
sleep onset. The actigraphic approach misclassifies inactivity as sleep; for example, just lying down
and watching television and not moving much will be regarded as sleep and creates ambiguity in
the overall calculation of sleep performance. From this perspective, actigraphic approaches might
seem unreliable; however, we can overcome this problem by monitoring the daily sleep routine
of a person and augment that information in our classification model. Based on this evidence, we
think that wearable devices are still not enough to replace the clinical sleep monitoring method.
However, they can certainly endorse other important evidence that can help to aid the clinical
trials.
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7.2 Reliability of Sleep Apps

Apart from wearable devices, there are couple of mobile applications that provide insights about
sleep routines of the users. Sleep As Android (2010), Sleep Time Smart Alarm Clock (2015), and the
Sleep Bot (2017) app provide information regarding the sleep–wake cycle and sometimes about the
sleep environment as well. These statistics only provide rough estimates and ultimately experience
a lack of reliability in measuring the sleep performances. These apps are also now capable of
extracting more evidence from paired wearables. Although this improves the inference capability,
it does not ensure an improvement in reliability.

8 CONCLUSIONS

In this article, we described the design, implementation, and evaluation of Sleep Well, a sleep
monitoring framework that helps classify the microscopic sleep states using wearable devices. We
postulated a gradient descent–based approach that incorporates with importance weights aware
updates in the microscopic sleep state detection process. We also consolidated our framework by
blending change point detection and active learning in the inference pipeline. Our classification
achieved 78% accuracy with the aforementioned experimental setup. The empirical results demon-
strate the effectiveness of our framework in determining different sleep states. The result increased
by 7% when active learning was employed. Our approach helps accelerate the faster convergence
to optimal sleep states detection accuracy using minimal user feedback in presence of active learn-
ing. In addition, with the help of change point detection, we were able to validate and interpret
the transitions between these sleep states. In the future, we plan to investigate the combination of
change point detection and classification to further improve the accuracy. Also, conforming the
attributes from user-provided feedback into our architecture will help provide meaningful insights
for better understanding of sleeping behavior.
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