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Abstract— Fine-grained monitoring of everyday appliances
can provide better feedback to the consumers and motivate
them to change behavior in order to reduce their energy usage.
It also helps to detect abnormal power consumption events,
long-term appliance malfunctions and potential safety concerns.
Commercially available plug meters can be used for individual
appliance monitoring but for an entire house, each such individual
plug meters are expensive and tedious to setup. Alternative
methods relying on Non-Intrusive Load Monitoring techniques
help disaggregate electricity consumption data and learn about
the individual appliance’s power states and signatures. However
fine-grained events (e.g., appliance malfunctions, abnormal power
consumption, etc.) remain undetected and thus inferred contexts
(such as safety hazards etc.) become invisible. In this work, we
correlate an appliance’s inherent acoustic noise with its energy
consumption pattern individually and in presence of multiple
appliances. We initially investigate classification techniques to
establish the relationship between appliance power and acoustic
states for efficient energy disaggregation and abnormal events
detection. While promising, this approach fails when there are
multiple appliances simultaneously in ‘ON’ state. To further
improve the accuracy of our energy disaggregation algorithm, we
propose a probabilistic graphical model, based on a variation of
Factorial Hidden Markov Model (FHMM) for multiple appliances
energy disaggregation. We combine our probabilistic model with
the appliances acoustic analytics and postulate a hybrid model
for energy disaggregation. Our approach helps to improve the
performance of energy disaggregation algorithms and provide
critical insights on appliance longevity, abnormal power consump-
tion, consumer behavior and their everyday lifestyle activities.
We evaluate the performance of our proposed algorithms on
real data traces and show that the fusion of acoustic and power
signatures can successfully detect a number of appliances with
95% accuracy.

I. INTRODUCTION

Research on Non-Intrusive Load Monitoring (NILM) al-
gorithms for metering the power consumption of everyday
appliances has mostly focused on two different egresses:

• Smart-meters: In the green building computing
paradigm smart meters provide the aggregate power
consumption of the entire house.

• Smart plugs: In this alternate approach fine-grained
energy consumption is enumerated at the room level
or even at specific appliance level using smart plugs.

Unfortunately each of these approaches has its own opera-
tional, deployment and research challenges. In smart-meter
assisted NILM techniques the deployment cost is minimal
but disaggregating the energy consumption of ‘low-load’ ap-
pliances (e.g., microwave, coffee maker etc.) from the total
sum is challenging. On the other hand, wireless smart plugs

provide power measurements at much finer granularity but they
have their own operational, deployment and monitoring costs.
Again detecting outliers in power consumption, and appliance
malfunctions and potential hazards require microscopic anal-
ysis of detailed energy footprints and state of the household
appliances. Motivated by these shortcomings, we propose to
augment the appliances’ ambient signatures with their power
consumption patterns to correctly identify the appliances’
states and relate them with their power consumption behavior.
Specifically, in this work we augment the appliances’ acoustic
signatures with its power consumption pattern to infer the
individual usage, waste and safety.

While the idea of combining the appliances’ ambient
acoustic signature and power sensing is certainly not new [8],
[16], [19]; our differentiator is unique because we explicitly
consider fine-grained state of appliances based on acoustic
and power signatures and augment both to reciprocate each
other. This improves the effectiveness of energy disaggregation
algorithms and appliances life cycle management system. In
this case, the key challenge is to effectively identify the
acoustic signatures of multiple appliances when they are
concurrently in operating mode and correlate them with their
power consumption behavior.

In this paper, we consider the challenge of discerning
such hidden or ambiguous appliances power states through the
appropriate combination of observations obtained from both
acoustic and metering contexts in a multi-appliance environ-
ment. We first classify and correlate acoustic signatures of each
appliance with its power consumption states individually to
model the intra-appliance state evolution. We then consider
multi-appliance, overlapped on their operation and model the
inter-appliance state evolution. The unique innovation in our
approach is to then model the appliances power state evolution
as a Conditional Factorial Hidden Markov Model, with the
individual appliance power state being condition together by
a set of constraints that are obtained from intra and inter
appliance acoustic enabled power state classification model.
We then perform experiments on real life power and acoustic
data traces from a variety of household appliances which attest
that such a hybrid acoustic-augmented energy disaggregation
model can significantly improve the performance of low-
level appliance state identifications and non-intrusive load
monitoring algorithms.

Key Contributions: We believe that our innovations and
results provide strong preliminary evidence that such a hybrid
model, where power sensing is augmented with ambient signa-
ture from cheap everyday sensors, can prove to be an attractive
and practically viable alternative. The key contributions of our
work are as follows.

2015 IEEE International Conference on Pervasive Computing and Communications (PerCom)

978-1-4799-8033-8/15/$31.00 ©2015 IEEE 63



1) We propose a multi-layer fine-grained energy moni-
toring framework for appliance identification and en-
ergy disaggregation. We leverage the acoustic based
sensing and correlate the appliance power states with
its acoustic signatures.

2) We propose a hybrid model combining an energy
disaggregation algorithm based on factorial hidden
Markov model with the appliance state information
obtained from the acoustic sensing model. We pro-
vide results that show that this approach is promising
when the number of overlapped appliances is rela-
tively small.

3) We evaluate the performance of our algorithms on
real life data traces collected from the home envi-
ronment. Our study shows that non-overlapped appli-
ances can be recognized on average with an accuracy
of 99% whereas the overlapped appliances and their
finer state of operation can be detected on average
with ≈ 70% accuracy.

II. RELATED WORK

The concept of Non-Intrusive Load Monitoring (NILM)
was first introduced by Hart [6] where a single source energy
consumption data is used to perform the load disaggregation.
Since then there has been a lot of advances in the development
of load disaggregation algorithms based on signal processing,
but a majority of the work focus on high frequency energy
consumption data and power features which are difficult to
obtain from the meters used in homes [2]. We discuss some
of the work related with our focus in this paper.

Smart Plugs for Energy: With the availability of smart
meters we can access the sub-metering data but mostly these
data has low frequency and is measured at an interval of
few seconds or minutes unlike other high frequency metering
devices like the ACme [1] which has a sampling rate of
16 kHz. With a very high sampling rate various properties
of energy analytic of the devices can be obtained like the
transients and higher harmonics etc [2]. But such measuring
devices are not provided by the utility providers and also the
cost of such a device is expensive and returns on investment
based on its usability is not justified.

Graphical model based NILM: The task of load disaggre-
gation is investigated for the low frequency energy measure-
ment using variants of Factorial Hidden Markov Model [4]. An
initial benchmark disaggregation results using FHMM model
has been presented in [3]. In [20] a combined framework
for the FHMM and a Difference FHMM has been used
which takes into account both the total and difference in
energy consumption to frame a time-series based optimization
problem and solve it using Quadratic programming. Other
than graphical models, matrix decomposition approaches like
the Non-Negative Matrix Factorization or Sparse Coding tech-
niques have been proposed to perform disaggregation but the
dataset has higher granularity to the extent of an hour to
days [5]. Since our objective is to focus on fine-grained energy
analytics to the extent of a second to minutes, we focus on the
probabilistic graphical models.

Acoustic Sensing: In Soundsense [10], a mobile phone
app is used to detect the various sounds of daily living and an
unsupervised technique is being used where a user feedback
is later needed to label the data. In [9] the activities of
the smart home inhabitants in a bathroom is predetermined

by collecting acoustic data from the participants for future
prediction. In case of appliance state identification and energy
prediction we collect some of the appliances’ acoustic foot-
print based on their regular usage in the home environment
and label them with their energy consumption. A system to
detect the energy consumption incurred by users’ action based
on audio recordings using smartphones has been proposed
in Sensimate [16]. Users’ ambient sounds are captured and
suitable filtering steps and classification techniques are applied
for learning the users’ current activity. 16 typical household
activities at an accuracy of 92% have been detected. Thus by
annotating the detectable household activities with information
about typical energy consumption, a good estimate of the
energy intensity of the users lifestyles can be made. Knowing
about the energy consumption is useful but their association
with abnormal power consumption events and appliance safety
and life cycle management are also impactful. Therefore to
visualize more detailed energy analytics we need to consider
the ambient context and its inter relationship with the appliance
usage.

Indirect Energy Sensing: Digressions from the direct
sensing approaches have also been investigated where the
context and the ambient factors are taken into consideration for
indirect sensing. ViridiScope [7], is an indirect sensing based
power signatures detection framework where sensors like mag-
netometers, microphone, and light sensors are used to detect
events. In Supero [8] multi-sensor fusion and unsupervised ma-
chine learning algorithms have been proposed. It can classify
the appliance events of interest and autonomously associate
measured power usage with the respective appliances. Unlike
ViridiScope which proposes an ad-hoc and appliance specific
sensor deployment, Supero proposes a systematic approach
for monitoring a range of acoustic appliances which jointly
processes the data from light and acoustic sensors to detect the
appliance’s working states. Our approach is synergistic with
Supero, which employed acoustic classification, principally
using the acoustic sensors to estimate the residential power
usage. In contrast, we focus on augmenting the fine-grained
acoustic signature based appliances states obtained from both
overlapped and non-overlapped classification models with the
energy disaggregation algorithm to identify and detect the
appliance power consumption behavior and individual energy
consumption at a finer level.

III. OVERALL FRAMEWORK

We introduce the overview of our framework, whose logical
steps are illustrated in Figure 1. Our framework assumes the
presence of a recording device which records the data for
appliances’ acoustic noise and they have been placed appropri-
ately so that most informative audio data can be collected. We
maintain one recording device per room to capture the room’s
acoustic footprint related with a set of appliances. We also
separately collect the acoustic data of the individual appliance
and label them for the base case. Real data traces has also
been collected in case of intra- and inter-appliances for testing
purpose. The energy consumption data has been metered using
Enmetric smart plugs [11] over a period of time and each
individual appliance energy consumption distribution has been
enumerated. The top level of the block diagram is the acoustic
based appliance detection logic where we classify and detect
the power consumption states of either individual or multiple
appliance from the acoustic test data. We also enumerate the
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states of the various appliances from the acoustic data which
further help to narrow down the search space when energy
disaggregation algorithm is employed. The next step consists
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Fig. 1. Functional Overview of Our Approach

of metering the aggregated energy consumption, computing
the appliance energy distribution, and inferring the individual
appliance energy footprint. We devise a probabilistic graphical
based model, more specifically a Factorial Hidden Markov
Model (FHMM) where the hidden states estimation utilizes
acoustic inference as condition. Subsequently, we also posit
a computationally cheap heuristic algorithm based on our
proposed model where the acoustic signatures are directly
fed into to detect the specific appliances being used and
the states they are operating in. This is utilized directly to
look up, in particular, the individual appliance’s probability
distribution and name the dominating appliance. This not only
increases the accuracy of prediction but also reduces the search
space of the contributing appliances in our probabilistic energy
disaggregation model.

IV. ACOUSTIC CHARACTERISTICS OF APPLIANCES

Acoustic noise carries versatile information of daily
life [10]. All activities, appliance usage and human com-
munication has some kind of sound associated with it. We
first exploit their relationship with acoustic nature of the
different appliance states and associate a direct link with the
energy consumption, and latter use that to infer the energy
consumption with the help of acoustic characteristics of the
appliances. We use this acoustic enabled power states as a
conditional factor to design our context-aware probabilistic
energy disaggregation algorithm.

Our objective is not just a robust acoustic algorithm that
can differentiate all sounds but a specific one which identifies
the appliances which are ‘ON’ and the states they are running
in, indeed we propose to augment the acoustic signatures of
appliances along with its power states to disaggregate the
total power consumption. The fact that most of the household
appliances (e.g., washer, dryer, refrigerator, heater, humidifier,
exhaust fan, blender, vacuum cleaner etc.) contain a motor
or noise generating components, which suggests that it is
possible to recognize them and infer their states based on their
acoustic signatures. To validate the viability of acoustic sensing
in case of power disaggregation we staged several isolated
experiments. As the acoustic characteristics have much lesser
variation from the nature of human speech we chose to collect
the data samples at 8 kHz using a Google Nexus 4 kept in close
proximity to the operating appliances/devices. To capture the
most informative acoustic data from the individual appliance

we placed the smartphone on top of the appliances inclining
against it and in case of multiple appliances we placed it
at a distance. We captured sound clips of the devices for
different range of time as needed for experimental evaluation.
The energy consumption was also monitored in parallel using
Enmetric smart plugs [11] to collect ground truth and for
some appliances with fairly similar number of states we used
the REDD dataset [3] to relate energy consumption and their
acoustic signatures.

Deducing the device states from the energy consumption is
a subjective task. For example, the Washer has several cycles,
like water-filling, spinning, flushing of dirty water, refilling and
so on. However if we compare the states in terms of energy
consumption the appliances may have the different steady
states that are occurring in between. In case of other appliances
like that of the refrigerator in the ‘ON’ phase, when there is
a similar and constant sound, the energy consumption has a
characteristic that starts with a spike and then takes the shape
of a decreasing ramp. Our initial analysis thus is based on those
appliances which maintain a steady energy curve when they
are in a particular state. We consider the Humidifier, Heater,
Dryer, Washer etc., to draw the initial insights on how an
acoustic signature other than the power consumption behavior
of appliances can play an important role in designing fine-
grained appliance state classification model.

Feature Extraction: We captured the sound clips from
several appliances and then stored each clip into a 1, 3, 5
and 7 minutes sound segment for faster processing using the
Audacity tool [15]. Next we divided each of these 1, 3, 5
and 7 minutes segments into frames of 0.5 seconds with 50%
overlap and applied a Hamming window to reduce spectral
leakage. We generated Mel Frequency Cepstral Coefficient
(MFCC) [10] [15] of those frames for acoustic classifica-
tion. We chose 13 coefficients as feature vectors and ran
multiple classification algorithms to establish the correlation
between intra- and inter-appliances power states and acoustic
signatures. We have constructed a training database where the
individual appliance sound-streams have been divided into 1,
3, 5 and 7 mins. This database has been used later to find the
segments that are representatives of each of the appliances’
microscopic states.

Appliance State Identification: An initial one time anal-
ysis has been performed to find out the subset of appliances
associated with the acoustic fingerprinting of a room in a
house. Assume D is the total set of appliances in the house,

D̂ is the subset of appliances along with N̂ as the affiliated
acoustic sensors in each room. We compared the captured
acoustic signatures from each of the individual rooms with
the acoustic signature of all the appliances in the appliance
set D to dedicate the appliances to the noise sensor in the
room to which it belongs. This concept of defragmentation
of acoustic noise based on the external structure of premises
is similar to the concept of electrical circuit breaker. A circuit
breaker taps into the different circuits of a house which can be
used to perform circuit level disaggregation [23] which reduces
the complexity of the problem. Similarly the acoustic sensors
help provide the characteristic of room level appliances which
is used to recognize the low-level working states of different
appliances.

We have used the training data to identify the appliances’
finer states. For individual appliance identification, we first
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Procedure Appliance Recognizer(Input: Segment(S), Feature_

Seg, Output: Appliance States)

1. feature-segment: feature of a segment;

2. S: appliances set;

3. F: appliances segmented feature set;

4. i = 1

5. appliance = null;

6. state = null;

7. For {i ≤ total_appliances}
8. appliance = S[i];

9. segmented_feature_list

= APPLIANCE_FEATURE_LIST(S[i]);

//Returns segmented feature of appliances

10.j = 1;

11.For {i ≤ total_segments}
12.dist =COSINE-DIST(features[j],feature_seg);

13. if dist ≤ threshold

14. appliance_match = True

15. break;

16. end

17.end

18.if appliance_match = True

19. state_seg_list = STATES_FEATURES(S[i])

20. For {k ≤ total_state_segs}
21. (state_match, state) =

22. CHECK-STATE(feature_seg,state_seg_list[k])

23. if (state _ match = True)

24. break;

25. end 26. end 27. end

28.end 29. return

Fig. 2. Acoustic state identification algorithm

break up the unseen acoustic signal into segments of 1, 3,
5 and 7 minutes. After that for each of the appliances from

an appliance/device set D̂ = {D̂1, D̂2, . . . , D̂n} consisting of

the states S = {S1, S2, . . . , Sm} ∈ D̂i, we check whether the
cosine similarity is less than a threshold value. Once we infer
that a segment is identified to be a state belongs to a certain
appliance, we stop further checking for that specific segment.
For the scenario with appliances with overlapped sequences
where multiple appliances are running together at one point
of time, we continue the previous process of acoustic signal
directed appliance-state association instead of terminating a
specific appliance until all the appliances are discovered. Fig 2
depicts the detailed procedure for our proposed intra and inter-
appliance state classification and association model in presence
of appliances acoustic signatures.

V. POWER CONSUMPTION AND STATE CHARACTERISTICS

OF APPLIANCES

In this section we discuss our data driven analysis of the
power consumption of the different appliances. At first we find
the different states of each of the appliances and understand
their power consumption characteristics. This will be key to
design the acoustic augmented energy disaggregation model
in our case. Table I shows the steady state characteristics,
number of states and usage pattern of most of the common
household appliances we have used for our experimentation.
Although these appliances have several modes, we have not
experimented using all the modes exhaustively (e.g., washer
has regular, delicate, fluff modes etc.). However we have tried
to identify the individual states (e.g., washing, spinning etc.)
in a particular mode.

Characterization of states has to be done by not only the
different modes but depending on the rate of usages. To design
a generalized version of the state identification algorithm we
need to have a mechanism of learning the distinct power states

TABLE I. CHARACTERISTICS OF ENERGY CONSUMPTION

Appliances Characteristic Type / Usage Pattern Number

of States

Fan Steady State Energy Consumption / Kitchen fan is on

during cooking, bathroom while someone is in, room

fan is on only during a season and a certain time of

day

1-4

Light Steady State Energy Consumption / On mostly when

someone is present and in night time

1-3

Heater Steady State Energy Consumption but goes to steady

state if it detects ambient temperature is above a

threshold / Only on during a season at a particular time

1-2

Humidifier Steady State Energy Consumption / On mostly at a

particular time of day

1-3

Washer Variable power consumption during different stages,

has multiple states in one cycle also it has different

modes / On mostly on Friday - Sunday

4-5

Dryer Stays in steady state with periodic spike of energy

which lasts for a few seconds / On mostly on Friday -

Sunday and is generally followed by a washer

1-4

Refrigerator Has periodic ‘ON’ and ‘OFF’ cycles with the ON cycle

having a ramp like characteristics starting with a spike

/ Always ON

2-3

Microwave Has a more or less steady state curve / On time has

some relation with Time of Day and Day of week

4-10

associated with an appliance. The problem lies with the low-
level power states (micro-states) as they have their own energy
consumption characteristics which may be detected as distinct
states. We have addressed this problem by looking into two
different types of power consumption graphs; one is based on
the usage patterns and the other is the histogram/probability
distribution function of the specific power consumption in
wattage, which can be considered as a basis for defining the
appliances micro-states. We have gathered and profiled the
energy consumption of several appliances as shown in Table IV
using our own collected data and also the several existing
datasets [3]. For some of the appliances, like Fan, Heater,
Humidifier, Washer and Dryer; we have experimented with
our own dataset as collected using Enmetric plug meter at a 1
sec granularity. For a set of other appliances, like Microwave,
Refrigerator, and Light we have performed the experiments
using REDD dataset [3] interpolating the data at a 1 sec
granularity from its publicly available 3 sec rate.

Energy Disaggregation: Our objective is to incorporate
acoustic signatures of the appliances to help guide a better
prediction on the fine-grained load disaggregation. We have
noted the technical feasibility of the acoustic conditioning that
can provide additional information for fine-grained analysis of
appliances energy consumption. Next we propose to design our
framework based on the Conditional Factorial Hidden Markov
model [4], and integrate acoustic based microscopic appliance
state information as a conditioning observation vector in our
hybrid model.

Before delving into the acoustic augmented energy disag-
gregation model, we first highlight the basic load disaggre-
gation algorithm for multiple appliances using a probabilistic
graphical model, namely Factorial Hidden Markov Model. One
of the basic problems we have faced implementing the FHMM
in cases when we could not gauge the specific enumeration
of the number of distinct power states associated with the
appliances. In [4] the appliance energy consumption has been
considered to have two states, only ‘ON’ and ‘OFF’ while in
real scenario making such an approximation makes it difficult
to scale the model along a set of appliances having more than
the two states. Therefore, we have extended the FHMM with
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this basic assumption to capture the microscopic but distinct
power states, while available with the aid of our proposed
acoustic conditioned model.

We first mathematically describe the evolution of the
microscopic power states of a set of appliances based on
their usage and span this beyond a two-state Gaussian model.
Consider M appliances D = {1, 2, . . . ,M} which are in the

states S = {S(t)
1 , S

(t)
2 , . . . , S

(t)
M } respectively at time t, where

each of them represents a ‘hidden state’ of an appliance D
at time stamp t. The characterization of a state is done by
the two factors: one is the range of the energy consumption
and the other is the corresponding acoustic characteristics.
The observed states are represented by Y (t) at time t (power
consumption data). Let Ak

ij denotes the transition probability

from one state i to j [i, j ∈ (Si, Sj)] for the kth appliance. The
emission probability is a Gaussian distribution and is given by
Bk

il for the kth appliance being in ith state while observing
the energy consumption in the lth state. Initial probability for

each of the appliance is denoted by π
(0)
jk which represents the

probability of an appliance k to be in state j at the initial state.
We solved this by EM algorithm where expected log likelihood
of the observed data and hidden states are determined in the
expectation step and the learning parameters are determined in
the maximization step as discussed next.

P (St|St−1) = P
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⎠
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⎞

⎟

⎟

⎠

=
T
∏

t=1

M
∏

m=1

P
(

S
(m)
t | S(m)

t−1 ;A
)

(1)

The energy consumption in all the states are assumed to
be a Gaussian distribution having parameters μ, which is
the mean of the individual appliance’s energy consumption
distribution. Power consumption is essentially a continuous
data which we have to discretize for constructing this state-
space model. Given that Yt is one-dimensional, the co-variance
matrix reduces to variance only and the emission probability
is given by the following (Eqn. (2)).

P (Yt | St) =
1√
2πσ2

× exp{− (Yt − μt)
2

2σ2
}

where
μt =

M
∑

m=1

K(m)
∑

n=1

W (m)S
(m)
t (2)

where S
(m)
t is an Indicator Random Variable which means

whether it is true that the appliance m is in nth state and W (m)

is the mean of the underlying distribution, i.e., the contribution
factor of each of the settings of S(m). By plugging Eqn. (2)
in Eqn. (1) we get,

P (Y ;A,B) =
∑

S

(

T
∏

t=1

1√
2πσ2

× exp{− (Yt − μt)
2

2σ2
}
)

×

T
∏

t=1

M
∏

m=1

P (S
(m)
t | S(m)

t−1 ;A) (3)

To determine the model likelihood and update the learning
parameters (transition and emission probabilities) we propose
to investigate a deterministic and greedy Expectation Max-
imization (EM) algorithm for a faster determination of the

micro-states of the appliances. Through this EM problem the
probability which needs to be enumerated is shown in Eqn.
(4) where we try to find the expected observation probability
by iteratively estimating the model parameters.

Q(λnew | λ) = E[logP ({St, Yt} | λnew) | λ, Yt] (4)

where the parameters that are to be updated are μ, σ and
the transition probability is P (St|St−1) as shown in Eqn.
(1). The determination of model likelihood and parameter
estimation are done based on the Structural Approximation
Method [13]. The forward backward algorithm is applied to
estimate the log likelihood of the model in the E-step and
the M-step of the parameter estimation process until the Eqn.
(4) reaches a maximum. Subsequent to the step of model
likelihood determination and parameter update, the inference
of the hidden states is computed with a tractable optimization
algorithm. Given the model and parameters constructed we
propose to use Genetic Algorithm (GA) [21] to solve the
problem. After the inference and parameter update we need
to solve the problem of which appliances are in what state.
This is formulated as in Eqn. (5).

argmax
St

E [logP ({St, Yt};λ)] = argmax
St

M
∑

m=1

logP (S
(m)
1 ) +

P (Y1 | S1) +

T
∑

t=2

[

M
∑

m=2

P (S
(m)
t | S(m)

t−1 )P (Yt | St)] (5)

FHMM based Hidden State Estimation: Simulated An-
nealing has been proposed to get the most likely sequence
of states in [4] and a heuristic algorithm has been developed
to solve the optimization problem. The choice of heuristic
for updating the states is a problem as it can be confined
in the local minima if we choose a gradient descent based
approach. For this reason we choose Genetic Algorithm for
finding the most probable sequence which will maximize the
objective function as represented by Eqn. (5). Thought this
introduces some randomness in state search but can help to
avoid the local minima. We have applied the GA technique [21]
to our objective equation (Eqn. (5)) with Roulette wheel
selection [22] methodology.

Acoustic Sensing Augmented Energy Disaggregation:
We have extended the FHMM based energy disaggregation
algorithm in this section and addressed the challenges we have
faced for the real deployment and testing of this algorithm
for multiple appliances micro-states identification and energy
disaggregation. We note that estimating the mean power con-
sumption associated with the each micro-states solely relying
on just the power states of the appliances are not always fea-
sible. Thus we propose to integrate mean energy consumption
for each micro-state of the appliances from an external context,
in our case using the inference of the power consumption from
the acoustic signature of the appliances.

We propose to use the individual appliance identification
and micro-state enumeration based on their acoustic signatures
as depicted in Fig. 3 to learn the average energy consumption
of each appliances in different states. This factor helps estimate
the mean values for each of the appliance’s energy states
and also reduces the extensive deployment of the plug meters
which are needed to measure power consumption of each and
every appliances. We propose two different factors to create a
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variant of FHMM model that will provide a faster and more
accurate and easier estimation of the disaggregated energy
consumption of multiple appliances.

• First factor is the change in energy consumption,
denoted as ∆Y. This triggers the acoustic sensing unit
to search for the noise sensor which shows an acoustic
change and subsequently infer which appliance state
change might have taken place. This reduces the
entire search space for appliances micro-states and its
association with the power consumption and acoustic
signatures. Also another assumption which constrains
the hidden state change is that one appliance can only
change state at a given time, as the probability of a
pair of appliances changing states simultaneously is
highly improbable and thus relaxes the search space.

• The second factor is the inference from acoustic data.
Most of the appliances emit certain noise and has a
certain pattern of noise in a particular state and when
the state changes there is a change in that pattern.
While the energy change, ∆Y, can pinpoint that some
state change has occurred at a particular instant, but it
cannot determine which appliance has changed state.
On the other hand, acoustic change can find out the
appliance which is changing state, but introduces an
error in estimating the exact time of change.

Considering these two factors we propose a heuristic algorithm
for estimating finer states of the appliances. We check whether
there is a change in energy consumption above a threshold
which can be considered as factor for a state change. If there
is no such changes then the appliances are assumed to be in
previous states or else if there is a significant change we check
within a temporal difference from that point if any appliance
acoustic change has been detected. Based on that we isolate
which appliance possibly changes and consider that the state
change for that appliance has occurred from the time when the
change was detected.

In Fig. 3 the algorithm for acoustic augmented energy
disaggregation has been illustrated. We begin by solving the
EM-algorithm as mentioned in previous section where we have
found the joint probability and estimated the model parameters.
The starting states are determined from acoustic inference and
the starting probabilities are all initially assumed to be 1.
The next step is maximizing the joint probability for energy
prediction by taking the log of it as shown in Line 8. We check
at each unit time (1 sec) the individual appliance’s energy
consumption. At each unit time we inspect whether there has
been a change in energy consumption more than a certain
threshold (ε). If there is a change in state for some appliances,
we look within a range of δ time from that point whether
there is any change in acoustic signal of an appliance which
may correspond to a discrete state change. Line 11 shows that
when there is no visible change in energy consumption all
appliances are considered to be in their previous state. Line
16 states that if the acoustic detector finds a state change for
the kth appliance, the joint probability is being updated over
the total duration of the operation of all the appliances.

VI. EXPERIMENTAL RESULTS

We first created a dataset for our multi-modal framework.
We measured the energy consumption of washer, dryer, heater,

humidifier, microwave, refrigerator, fan which have their own
distinct acoustic nature. We used Enmetric to measure the
energy consumption and our data has been measured at a rate
of watt per second. We also used the standard REDD dataset to
determine the initial probability values for different appliances.
The preliminary data collection is done for the different appli-
ances that produce sound. We have recorded those in closed
environment and labelled them separately for single-state and
multi-states (sub-states) appliances. The house consists of
several rooms that consist of different appliances which are
used to perform different activities for collecting acoustic and
energy footprints. We tested our results in one house where we
considered four rooms - Bedroom (Heater, Humidifier, Fan),
Basement (Humidifier, Heater, Fan is alternatively used with
previous two), Kitchen (Microwave, Refrigerator, Exhaust Fan)
and Basement Closest (Washer and Dryer). Four inhabitants
were in the house and we collected acoustic data for two days
in a total of six hours in a controlled environment.

Acoustic Based Appliance Identification: Settings for acous-
tic data collection has been described previously as it was done
individually and in presence of interleaved appliances. We have
developed a heuristic approach for acoustic cum power state
identification as shown in Fig. 2. We have first tried to find the
acoustic natures of different appliances and then established
the relationships with the finer power consumption states both
for non-overlapped and overlapped appliances.

The accuracy obtained for different classification algo-
rithms for two sets of overlapped appliances (Washer and
Dryer; Heater and Humidifier) are shown respectively in
Figs. 4, 5, 6 and 7. For experimentation we have defined differ-
ent test sets and tested the classifiers on them and considered
the average of the results. We have compared the classification
of acoustic states of the appliances using standard classification
algorithms, like J48, MLP, Naive Bayes, NBTREE along with
our proposed algorithm as shown in Fig. 2. We note that
our proposed heuristic approach based on Cosine similarity
measure provides better classification accuracy results.

We observe that the overall accuracy considering just one
specific segment of acoustic data is not reasonable. There is
always a trade-off in choosing the segments as because when
the segment size is too small over-fitting takes place which
results in poor classification. Again choosing a segment for
a very long time is not much useful as it becomes difficult
to comprehend the finer state changes. Thus for our acoustic
based state recognition problem we have used a combination
of three different segments (1min, 3min, & 5min) to devise
a better inference strategy for the identification of appliances
distinct microscopic power states.

Table II shows the results of multiple appliances micro-
scopic state detection accuracy with respect to different acous-
tic segment lengths. We note that for a larger acoustic segment
length our acoustic state classification algorithm works better
to identify an individual appliance from a subset of appliances.
We have performed the experiment with overlapped appliances
as well. Table III represents the appliance detection accuracy
when they are operating concurrently with varying overlapped
duration. It is noted that with the increase in the overlapped
operating period of multiple appliances the detection accuracy
decreases. Let us consider the following scenario to understand
the overlapped scenario. Given a 10 min acoustic segment for
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Procedure Acoustic Augmented FHMM (Input: aggregate power data (P), Output: appliance identification & power enumeration)

1. E-step: Compute the posterior probability using Eqn. (5)

2. M-step: Update the parameters

3. For m = 1 to M

4. if A
(m)
j

==1

5. πm
j = 1 //Initialize the Starting State Probability with 1

6. end if

7. end For

8. JointProb[1] =
∑M

m=1 log{πm
j } −

(

1
2σ2 {Y −

∑M
m=1 μ

(m)
j

× Q
(m)
j

}
)

// FHMM State Initialization //JointProb stores the Joint probability

9. For t = 1 to T //T is the total time

10. if ∆Y > ε //No change in state for any appliance

11. JointProb[t] = JointProb[t-1] +
∑M

m=1 log{P (S
(m)
t , S

(m)
t−1)} × Q(S

(m)
t−1 , S

(m)
t−1) −

(

1
2σ2 {Y −

∑M
m=1 μ

(m)
j

× Q(S
(m)
t−1)}

2
)

12. else //Change in state for an appliance

13. For t1 = t - δ to t + δ //Within the temporal vicinity of the change

14. Check for change in acoustic state for an appliance A
(k)
j

(t)

15. Change in kth
appliance from state at t-1 to t is the new Q{S

(k)
t , S

(k)
t−1}

16. JointProb[t] = JointProb[t-1] +
∑M

m=1&m �=k
log{P (S

(m)
t−1 , S

(m)
t−1)} × Q(S

(m)
t−1 , S

(m)
t−1) +

log{P (S
(k)
t , S

(k)
t−1) × Q(S

(k)
t , S

(k)
t−1)} -

(

1
2σ2 {Y −

∑M
m=1 μ

(m)
j

× Q(S
(m)
t−1)}

2
)

17. End for 18. End if 19. End for

20. Backtrack the states for the appliances 21. end

Fig. 3. Acoustic Enabled FHMM Energy Disaggregation

any two appliances, such as washer and dryer with a 10%
overlapped case; washer and dryer may remain concurrently
on for the first 1 min whereas the dryer may remain on for the
remaining 9 mins (assuming washer runs first).

TABLE II. INDIVIDUAL APPLIANCE DETECTION ACCURACY

Appliances State Accuracy

% (1min)

Accuracy

% (2min)

Accuracy

% (5min)

Fan Hi 100 100 90

Med 100 80 70

Low 100 100 100

Heater ON 80 100 100

Humidifier High 40 100 100

Washer Water-

Pouring

100 100 100

Spinning 100 100 100

Drain 100 100 100

Dryer ON 100 100 100

Refrigerator ON 100 100 100

Microwave ON 80 100 100
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Fig. 4. Washer Comparative Accu-
racy
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Fig. 5. Dryer Comparative Accuracy

TABLE III. OVERLAPPED APPLIANCES DETECTION ACCURACY

Appliances Accuracy %

(10% Overlap)

Accuracy %

(30% Overlap)

Accuracy %

(50% Overlap)

Heater 76.92 69.23 61.53

Humidifier 81.25 62.5 56.25

Washer 83.2 69.5 61.2

Dryer 75 71.2 55.4
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Fig. 6. Heater Comparative Accu-
racy
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Fig. 7. Humidifier Comparative Ac-
curacy

Energy disaggregation using FHMM: In this section we
present the results on the performance of FHMM-based en-
ergy disaggregation algorithm solely relying on the appliances
power consumption behavior. We articulate the results based
on two important factors. First, we show how much closer
FHMM-based estimated average energy consumption is to
the actual measured energy consumption of the appliances.
Secondly, at finer state-level, how close can we detect the most
likely state sequence of energy consumption associated with
different microscopic states of appliances? To capture this,
we define two metrics. i) Total Energy Consumption Error:
Total Energy Difference =| ∑

e(t) − ∑

é(t) | and ii)

Timewise Error =
∑ e(t)−é(t)

e(t) × 1
T

. The measured average

consumption is the ground truth of each of the appliances cor-
responding to their different states (measured by our testbed)
while estimated average consumption denotes the average
energy consumption of the appliances as enumerated by the
FHMM-based energy disaggregation method. The timewise
error on the other hand gives an idea about the correctness
in estimating the sequence of energy consumption while the
total energy difference captures the total difference of energy
consumption in terms of Kilowatt-hour. In Table IV, we report
FHMM-based energy disaggregation algorithm performance
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on the measured energy consumption (ground truth), the es-
timated energy consumption, timewise error and total energy
differences for multiple appliances associated with their fine-
grained operating states.

Energy disaggregation using Acoustic Augmented Model:
We have evaluated the performance of our acoustic enabled
energy disaggregation algorithm as presented in Fig 3. We
have exploited the appliances hidden power consumption state
estimation utilizing the acoustic characteristics of the appli-
ances and maximized the joint probability of the acoustic
enabled FHMM. We have retrospected both, the change in
energy consumption and the acoustic signals to triangulate the
inference of the most likely state and probable appliances. We
have considered the same set of appliances for this specific
experiment to compare the performance with FHMM-based
approach. The performance of our acoustic enabled energy
disaggregation algorithm has been articulated in Table IV. We
note that our acoustic enabled energy disaggregation algorithm
performs an order of magnitude (≈ 2 folds) better than the
FHMM-based approach.

TABLE IV. PERFORMANCE COMPARISONS BETWEEN FHMM-GA
AND ACOUSTIC ENABLED FHMM

Appli-

ances

Measured

Average

Con-

sumption

Estimated

Average

Con-

sumption

Timewise

Error

(FHMM-

GA)

Total

Energy

Differ-

ence

(FHMM-

GA)

Timewise

Error

(Acous-

tic En-

abled)

Total

Energy

Differ-

ence

(Acoustic

Enabled)

FH 84 87 1.97 15 .85 10

FM 67 62 2.5 15 .75 7

FL 58 52 5.67 21 1.27 11

H 1425 1420 8.29 47 4.12 25

HH 329 330 2.51 17 1.74 10

HL 165 163 .45 7 1.78 9

WP 11 14 .75 8.24 1.3 13.24

WS 650 647 5.71 37 4.15 29

WD 450 427 9.81 75 5.23 32

D 330 304 6.42 43 4.19 23

RO 187 194 2.78 17 1.23 9

RS 6 7 .7 8 .7 7

M 1487 1492 6.41 47 3.97 24

Acronyms used in Table IV: Fan (High) - FH, Fan (Med) - FM , Fan (Low) - FL , Heater

- H, Humidifier (High) - HH, Humidifier (Low) - HL, Washer (Water Pouring) - WP,

Washer (Spinning) - WS, Washer (Draining) - WD, Dryer - D, Refrigerator (ON) - RO,

Refrigerator (Standby) - RS, Microwave - M.

VII. CONCLUSIONS

We have proposed an appliance acoustic classification
model for fine-grained state analysis. We have provided our
findings for both non-interleaved and interleaved appliances
in everyday home environment. We have advocated that com-
bining the acoustic based classification model help improve
the overall performance of energy disaggregation algorithm,
abnormal power consumption event detection and appliances
long-term life cycle management. We have designed a con-
ditional probabilistic graphical model for augmenting the
acoustic modality with the energy disaggregation algorithm
and showed that the 95% appliance detection accuracy can
be achieved with a smaller set of appliances. While this
approach is promising we believe further augmentation of
appliances’ other ambient signal modality could help scale
this model beyond any specific and limited set of appliances.
Currently we have a very basic acoustic setup, using that we
have performed staged experimentation, but we have been
developing a microphone sensor based acoustic system [25]

which will be capable of recording sound, computing MFCC
and offloading computational tasks to the server. With the
development of a real time system we plan to look for more
sophisticated acoustic event detection methods which will con-
sider the ambient noise and reverberation into effect. Although
it may seem like unnecessary cost to deploy hardware for data
collection and processing, but acoustic signals are omnipresent
and continuous source of information in smart environments;
which can be leveraged for several purposes and also with
the advancement of pervasive computing system it may come
integrated with future household appliances.
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