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ABSTRACT

Accurate estimation of localized occupancy related informa-
tion in real time enables a broad range of intelligent smart
environment applications. A large number of studies us-
ing heterogeneous sensor arrays reflect the myriad require-
ments of various emerging pervasive, ubiquitous and partic-
ipatory sensing applications. In this paper, we introduce a
zero-configuration and infrastructure-less smartphone based
location specific occupancy estimation model. In our pro-
posed model we combine acoustic (microphone), locomotive
(accelerometer) and location (magnetometer) specific sensor
of smartphone to derive fine-grained semantic location spe-
cific occupancy information at zone/room level granularity.
We opportunistically exploit smartphone’s acoustic sensors
in a conversing environment and motion sensors in absence
of any conversational data. We demonstrate a novel speaker
estimation algorithm based on unsupervised clustering of
overlapped and non-overlapped conversational data and a
change point detection algorithm for locomotive motion of
the users to infer the occupancy. We augment our occupancy
detection model with a fingerprinting based methodology us-
ing smartphone’s magnetometer sensor to accurately assim-
ilate location information of any gathering. We postulate a
novel crowdsourcing-based approach to annotate the seman-
tic location of the occupancy. We evaluate our algorithms
in different contexts; conversational, silence and mixed in
presence of 10 domestic users. Our experimental results on
real-life data traces in natural settings show that using this
hybrid approach, we can achieve approximately 0.76 error
count distance for occupancy detection accuracy on aver-
age.
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1. INTRODUCTION
Localized commercial (University, Office, Mall, Cineplex,

Restaurant etc.) and residential (apartment, home etc.)
building occupancy detection and estimation at room/zone
level granularity in real time can provide meaningful insights
to many smart environment applications, such as green build-
ing, social gathering, event management etc. Smartphone-
based participatory and citizen sensing applications have
adhered to the promise of building such applications by uti-
lizing various context sensing sensors on board. Different
sensors can be exploited individually or in tandem to build
a variety of such novel applications to satisfy the myriad re-
quirements of differing smart environment applications. For
example, potential benefit from microphone sensor based ap-
plication is the assessment of social interaction and active
engagement among a group of people by leveraging their
conversational contents [1], speaker identification and char-
acterization of social settings [2][3][4]. To enumerate the
number of people in a conversational episode, such as dur-
ing a social gathering, interactive lecture session or in a
restaurant or shopping mall environment, various speaker
counting paradigms have been explored [5][6][7]. Most of
the recent studies which focus on conversational data fea-
tures to extract high level occupancy information, assume
that all of the users need to take turns at some point. While
this specific scenario is feasible it is not ideal. To tackle
this ideal situation, researchers have proposed using arrays
of microphone sensors, video cameras or motion sensors for
identifying microscopic occupancy information in real time
[8][9] which are obtrusive in nature. We envision to move
one step further by considering a more natural environ-
ment where people may spontaneously participate or abstain
from any conversational phenomenon. We posit to augment
smartphone-based locomotive sensing model in absence of
any conversational episode along with acoustic sensing-based
audio inference model to precisely capture the characteris-
tic of a natural environment and accurately estimate the
occupancy count. To further pinpoint the occupancy we
integrate the smartphone’s magnetometer sensor-based lo-
cation sensing model. In pursuit of these goals we design a
model which opportunistically exploits both the audio and
motion data respectively from smartphone’s microphone and
accelerometer sensor to infer the number of people present in
a gathering and their semantic location information as sup-
plemented by the magnetometer sensor on the smartphone.
We also introduce a crowdsourcing model to reduce the ef-
fort for obtaining semantic location information at scale.

In particular we propose a zero-hassle ambient and in-



frastructure-less mobile sensing (aka smartphone) based ap-
proach by exploiting only the smartphone’s sensors to pro-
vide significantly greater visibility on real time occupancy
and its semantic location. The key challenge in this case
is to effectively estimate the number of people in a crowded
and non-crowded environment either in presence of any con-
versational data or not. Such hybrid sensing approach could
potentially furnish more fine-grained occupancy profiling to
better serve many participatory sensing applications while
saving smartphones’ battery power by advocating a distributed
sensing strategy. Main contributions of the paper are sum-
marized below:

• We propose an acoustic sensing based linear time adap-
tive people counting algorithm based on real-life con-
versational data which promotes a unified strategy of
considering both overlapped and non-overlapped con-
versational data in a natural environment. We propose
to select opportunistically minimal number of micro-
phone sensors which can substantially reduce the en-
ergy consumption of smartphones. Our proposed peo-
ple counting algorithm can dynamically select length
of the audio segment compared to the other existing
work [6].

• Although acoustic sensing based approach holds great
promises in inferring the number of occupants it fails in
absence of any conversational data. Therefore we pro-
pose to augment motion sensing based counting strat-
egy with our acoustic sensing based people counting
algorithm which works on extreme modality of either
of the data sources, be it acoustic or locomotive.

• We design a magnetometer sensor based localization
technique at zone/room level granularity to infer the
location of a conversing group. We propose a novel
crowdsourcing model to map the magnetic signature of
different locations and collect a large number of anno-
tated location information to tag the occupancy with
its semantic location information.

2. RELATED WORK
We particularly review the most relevant literatures on

occupancy inference problem in the context of conversa-
tional sensing, localization, and speaker estimation which
are smartphone based.

Smartphone Speaker Sensing: A large number of prior
work have used smartphones’ microphone to opportunisti-
cally analyze audio for context characterization. For ex-
ample, SpeakerSense [4] performs speaker identification and
SoundSense [10] classifies sounds from macro to micro con-
texts. They have often in common employing the supervised
speaker learning techniques. In contrast, our model’s occu-
pancy counting process is entirely unsupervised. Our pro-
posed model anonymously estimates the number of people
from smartphones’ acoustic cum locomotive sensing model
where we have employed unsupervised learning techniques
to cluster different forms of acoustic signatures. For exam-
ple, [11] have built a model from mean and covariance matri-
ces of Linear Predictive Cepstral Coefficient (LPCC) of voice
segments in conversations and used Mahalanobis distance
to determine if two models belong to the same or different
speakers. [12] has performed speaker clustering using dis-
tance of the feature vectors extracted from different speak-

ers and finally applied modified C-means algorithm with
distance metric data. However, their experiments for oc-
cupants estimation were on telephonic conversational data,
where multiple participants were present, and voices were
frequently overlapped and intertwined with the noisy en-
vironment. Our proposed model performs speaker count-
ing without any predefined environmental setup and col-
lects data from natural conversation. Our proposed speaker
counting algorithm is close to [13], [6] where smartphone-
based speaker counting has been proposed in a controlled
scenario where all the participants spoke actively. [6] used
a fixed length audio segment (3 sec) where each segment
corresponds to an individual but we performed this audio
segmentation dynamically to increase the accuracy of occu-
pancy inference. [6] also classified a few segments as undeter-
mined but our system never discards segments as undeter-
mined which is achieved only through employing dynamic
segmentation. Therefore, our proposed audio based occu-
pancy inference model tackles a richer problem, where none
of the speakers are discarded for handling the computational
challenges. Crowd++ [6] proposed to combine pitch with
MFCC to compute the number of people with an average
error distance of 1.5 speakers. On the other hand our model
improved the average error distance by a factor of two (0.76
Speakers).

Indoor Localization: UnLoc [14] proposed an unsuper-
vised indoor localization approach exploiting environmental
identifiable artifacts and specific signatures on single or mul-
tiple sensing dimensions using smartphones’ different sensors
readings (mainly from accelerometer, compass, gyroscope,
and WiFi APs). [15] measured geomagnetic field in a way
which is spatially varying but temporally stable, using an
array of e-compasses to infer location. However they used
a bunch of sensors or sensor arrays for location detection
where as our model only used smartphones’ magnetometer
sensor to infer semantic location information of a gather-
ing at zone/room level granularity. [16] used magnetic fin-
gerprints with dynamic time-warping algorithm to predict
location information with a 92% accuracy. Our model used
standard Random Forest algorithm and achieved 98% accu-
racy to detect high level semantic location information of
any gathering. IndoorAtlas location technology [17] utilized
anomalies of ambient magnetic fields for indoor position-
ing. This platform provides the functionality for participa-
tory sensing where the crowd can contribute by war driving
magnetic signatures of an unexplored location.

3. OVERALL SYSTEM ARCHITECTURE
We envision developing a minimally invasive cost free ro-

bust mobile system for counting the number of people present
at any time in any environment and enlighten their seman-
tic location information. Our model boosts these capabili-
ties by employing smartphones’ magnetometer, microphone
and accelerometer sensors. Our system as shown in Fig. 1,
comprises of two subsystems, one deployed on smartphone
and other in server. Using only acoustic sensing it is not al-
ways possible to predict the correct number of the occupants
present in a specific location as some people get involved in
a conversation while others remain silent. For example, in a
class room scenario while professor lectures some of the stu-
dents participate but majority of the students remain silent.
Sensed data are stored in a data sink (sink) for posterior
analysis in the mobile part of our proposed architecture con-











sort the candidates with respect to this value assuming that
in an ideal conversational episode the participants remain in
close proximity. We calculate E(Ci) based on Eqn. 5.

E(ci) =

m
∑

p=1

Xk,p(

n
∑

r=1

M̄ (i)
a,rD̄(i)

r,b)p,l (5)

where k = 1, l = 1, 1 ≤ a ≤ n, and b = 1

After calculating the error measurements for each candi-
date, we sort CF and choose the first 10 candidates from
CF . We plot the magnetic signature pattern of these candi-
dates and the test pattern. The crowd now have to choose
the signature pattern in which they find the test pattern. In
our experiments there were some cases where we observed
empty candidate set. In these cases, we selected the last it-
eration’s candidate set which was not empty. We also asked
the crowd, if they found match with multiple candidates
then they have to choose the earliest signature pattern.

5. SYSTEM IMPLEMENTATION AND EVAL-

UATION RESULTS
We now discuss the detailed implementation and evalua-

tion of our model framework.

5.1 Tools and Resources
We used Google Nexus-5 with built in microphone and

three axes accelerometer sensor for our experiments. Our en-
tire system comprises of two parts: i) sensing, and ii) classi-
fication and clustering, first one was implemented on Nexus-
5 and latter on the server. Application software was written
in Java which utilizes Android Programming Interface (API)
to sense microphone and accelerometer signals. Classifica-
tion and clustering algorithms and our occupancy counting
algorithm have been implemented on the server side using
python.

5.2 Data Collection
Magnetic sensor signals are sensed through our android

application and stored temporarily on mobile storage. We
first collected magnetic data for training set, and subse-
quently for the testing set. We divided the room space into
small regions each contains area 0.5 × 0.5 m2 and named
as cell. Thus each room forms grid containing cells. We
collected data from each cell for 5 minutes both clockwise
and counter clockwise direction to form the training set.
We also maintain fixed height (approximately 4 feet from
the floor) when collecting our ferromagnetic fingerprint be-
cause it also depends on the height. Partial 3rd floor map
is shown in Fig. 10. It shows sample data collection path of
room number 305 where green line shows how the grid forms
and red line shows the data collecting path in both direction
along the grid. We use sampling rate 5Hz for magnetometer
sensor data. We implemented the acoustic sensing and col-
lected conversational data from different places at different
times in natural settings. Conversational data have been
collected and properly anonymized during the spontaneous
lab conversation among the students (without making the
occupants aware of it), lab meeting, and general discussions
in the lobby/corridor in presence of a variety of surrounding
noise levels. The demographic for our conversational data
collection was 1-10 persons (with 5 females and 5 males) in
age group of 18-50 years. The acoustic data were collected

at a mono sampling rate of 16kHz at 16bit pulse-code mod-
ulation (PCM).

5.3 Privacy
One of the major concerns of smartphone based acoustic

signal processing is privacy. This concern becomes more se-
rious when smart-phone records the conversation data. Our
counting algorithm determines the number of speakers in
this environment in an anonymized manner. We used text
file as cover in which our recorded audio is embedded. A
secret key is induced for embedding and extraction process
which is known by both the sender and the recipient. A
steganographic function takes cover file as argument and
then embeds audio file and key to produce stego as out-
put which is sent to our server. A reverse steganographic
function on our server side takes stego file and key as pa-
rameter and produces audio file as output. There are differ-
ent steganographic methods (i.e. LSB coding, parity coding,
phase coding) but we used the simplest method, least signif-
icant bit algorithm which replaces the least significant bits
of some bytes in the cover file to hide a sequence of bytes
containing hidden data. To generate the stego file, the algo-
rithm first converts each character of the cover file into bit
stream followed by converting the audio file into bit streams
and finally replacing LSB bit of the cover file with the bit
of the audio in the secret information. We also ensured that
the size of the file was not changed during this encoding and
it was suitable for any type of audio file formats.

5.4 Magnetic, Acoustic and Locomotive Fea-
ture Extraction

We discuss different features relevant to our acoustic, lo-
comotive sensing and localization technique in this section.

Magnetic Features: For location detection we used only
magnetometer sensor. Smartphones’ magnetic sensor pro-
vide three axes values x, y and z axis. From these values we
calculated magnitude using m =

√

x2 + y2 + z2. We con-
sidered only the resultant magnitude to mitigate variations
of the readings resulting from smartphone’s different axes
based on different positions. We also calculated mean, vari-
ance, and standard deviation of each readings and combined
those features to generate the feature vectors.

Acoustic Features: We generated two basic features
which are used in the speaker identification - MFCC and
Pitch. Each feature has been described in details in the
following. i) MFCC is one of the most significant features
which is used for acoustic processing. We followed the fol-
lowing steps to process it. 1. Take the Fourier transform of
(a windowed excerpt of) a signal, 2. Map the powers of the
spectrum obtained above onto the Mel scale using triangular
overlapping windows, 3. Take the logs of the powers at each
of the Mel frequencies, 4. Finally, take the discrete cosine
transform of the list of Mel log powers. We excluded the first
co-efficient of MFCC and then chose 20 coefficients as fea-
ture vectors. ii) Pitch is defined as the lowest frequency of a
periodic waveform. It is the discriminative feature between
man and woman. Human voice pitch interval falls within
the range of 50Hz to 450Hz [23]. We calculated pitch of
different segments using YIN [22] algorithm. We used 32
msec hamming window with 50% overlap for computing the
Pitch and MFCC feature.

Locomotive Features: We considered the magnitude of
the accelerometer data as our locomotive feature in order to







toolkit [27]. We implemented our mapping algorithm on the
server side and then used the function active interactor of
VW to interact with the users. We showed 10 magnetic sig-
nature patterns and 1 test pattern to an user and asked him
to choose the magnetic signature pattern in which he/she
finds the test pattern. 10 participants participated in the
crowdsourcing task and in Fig 20 we show the overall accu-
racy for each participants when given 15 pattern matching
tasks. Average accuracy of gaining correct annotation for
these 15 patterns is ≈ 81% which is adequately high. Our
results indicate that the probability for getting noisy labels
is very low and the crowd annotated data can be chosen as
input to the classifier.

6. DISCUSSION AND FUTURE WORK
In the current version of our work, we have assumed that

people keep their smartphone in the pocket or in the hand
which might not be ideal in some cases. In future our plan
is to make our architecture more robust and independent of
smartphones’ location. The performance of our counting al-
gorithm does not get affected by TV or radio sounds as TV
or radio follows different modulation techniques which make
it easier for us to remove those external noises from resultant
audio signal systems. We have used source separation where
significant overlap between human conversation and TV oc-
curs. In the current implementation, location mapping pro-
cess is independent of the classification process. In future
we plan to develop and integrate a combined mapping and
classification model. We also plan to investigate fine-grained
floor level location using smartphone barometric sensing.
We plan to investigate more advanced opportunistic sens-
ing model considering microphone, accelerometer and mag-
netometer sensor participation not only based on a server-
based architecture but also based on an inter-smartphone
distributed collaborative sensing based approach.

7. CONCLUSIONS
In this paper, we presented an innovative system to infer

the number of people present in a specific semantic loca-
tion which opportunistically exploit accelerometer and mi-
crophone sensor of smartphone for people counting. We pro-
posed an acoustic sensing based unsupervised clustering al-
gorithm by addressing the underpinning challenges evolving
from naturalistic overlapped and sequential conversation to
infer the occupancy in an environment. We posit a change
point detection based locomotive sensing model to infer the
number of people in absence of any conversational episode.
We implement an opportunistic context-aware client-server
based architecture to leverage smartphones’ microphone, ac-
celerometer and magnetometer sensors and combine our acous-
tic sensing with locomotive and semantic location sensing
model to better predict the location augmented occupancy
information. We have also demonstrated a novel crowd-
sourcing model for reducing the effort of collecting location
information at zone/room level at large scale. Our experi-
mental results hold promises in a variety of natural settings
with an average error count distance of 0.76 in presence of
10 users. We believe this investigation holds promises and
helps to open up many new research directions in this op-
portunistic multi-modal sensing domain.
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