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Active Learning Enabled Activity Recognition

H M Sajjad Hossain, Md Abdullah Al Hafiz Khan, Nirmalya Roy

University of Maryland Baltimore County

Abstract

Activity recognition in smart environment has been investigated rigorously in recent years.
Researchers are enhancing the underlying activity discovery and recognition process by
adding various dimensions and functionalities. But one significant barrier still persists which
is collecting the ground truth information. Ground truth is very important to initialize a
supervised learning of activities. Due to a large variety in number of Activities of Daily
Living (ADLs), acknowledging them in a supervised way is a non-trivial research problem.
Most of the previous researches have referenced a subset of ADLs and to initialize their
model, they acquire a vast amount of informative labeled training data. On the other hand
to collect ground truth and differentiate ADLs, human intervention is indispensable. As a
result it takes an immense effort and raises privacy concerns to collect a reasonable amount
of labeled data. In this paper, we propose to use active learning to alleviate the labeling
effort and ground truth data collection in activity recognition pipeline. We investigate and
analyze different active learning strategies to scale activity recognition and propose a dy-
namic k-means clustering based active learning approach. Experimental results on real data
traces from a retirement community-(IRB #HP-00064387) help validate the early promise
of our approach.
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1. Introduction

Recently we have been experiencing the rapid development in using ambient technologies
and smart devices which has been triggered by the adaptable sensor technologies. These
advancements in technologies have broadened the functional domain of mobile and sensor
computing. As a result Internet of Things (IoTs) where multimodal sensor setup is com-
bined to perform context aware actions, is becoming an integral component. Wide variety
of context aware applications like occupancy detection [1], HVAC control [2], localization,
health monitoring [3] etc. , have been introduced. Combining with human activity recog-
nition model, an IoT inspired domain “Smart Home Technologies” have been gaining more
attention for health monitoring, independent living for senior citizens and making our life
comfortable. Smartthings, Vera, Microsoft Lab of Things, openHAB, Ninjablocks, Twine,
CASAS:Smart Home in a Box [4] and other automation systems are already in the market
for the users. Researchers are extending the capabilities of these automation systems by
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augmenting different functionalities. One major driving component for these context-aware
smart home technologies is to reliably learn the human activities using the observable states
of ambient and wearable sensor data. For learning and recognizing activities of daily living
(ADLs) machine learning or rule based algorithms are being exploited extensively. These
trained models are then employed to make decisions according to the domain of the applica-
tion even in unknown situations. Traditional passive learning approaches are only consistent
with the existing class labels. The training for passive learning is carried out in specific ex-
perimental setup which is not ideal for real life applications due to a large variety of human
activities and underpinning uncertainty with the data capturing. In order to build a robust
and stable model, we have to provide vast amount of labeled data- ground truth information
which is cumbersome and not always feasible. Building adaptive and personalized model for
individual users has become a crucial obligation because of the diversity of a same activity
across different individuals. For example, the differences in speed of walking, gestures, sleep
habits etc., are ambiguous to a general passive learning model. Active learning [5] helps
us to determine the most informative data points which is a semi-supervised approach. We
can actively query the users for labeling informative data points and mitigate the necessity
for acquiring a large amount of labeled data points by applying active learning. In activ-
ity recognition tasks using ambient or wearable sensors, we have abundant unlabeled data
instances which makes active learning as an ideal solution for building an efficient classifica-
tion model. Although crowdsourcing provides the platform for labeling large amount of data,
the fundamental question is how much of these labeled data will be statistically significant,
reliable, noise free and just-in-time. Also from a requester perspective increase demand in
data labeling in turn increases the cost of crowdsourcing. Therefore, a cost-effective crowd-
sourcing model needs to be designed. In this case, active learning can potentially help us to
identify potential important data instances that can balance out the trade-off between cost
and model performance.

In general, a subset of ADLs are dealt with and most of the proposed activity recognition
models are trained with a handful number of activities. On the other hand, it is quite
impossible to train the classifier with as many activities as possible. Thus we need an
activity recognition system which can dynamically discover unseen activities. Recognition
model which can discover unseen activities has been investigated in some of the previous
works. [6] proposed a semantic attribute based activity recognition model by creating an
activity-attribute matrix for learning unseen activities while [7] proposed a metric learning
based approach to reject unseen activities. An activity recognition model using finite state
machines which can differentiate unimportant instances of activities for learning a generalized
model has been presented in [8]. The use of active learning for activity recognition systems
has been investigated by very few researchers. The authors of [9] have proposed a bayesian
active learning approach for labeling data in smart homes. Uncertainty based active learning
for activity recognition has been employed in [10] [11]. The authors of [12] used entropy based
measure to calculate the informativeness of activity data instances. An activity recognition
framework called Legion:AR [13] uses active learning and seeks for labels from crowd on
demand. AALO [14], a single habitant activity recognition model for smart homes uses
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active learning for labeling overlapped activities. In this paper, we propose a model for active
learning which can help identify latent informative and as well as unseen data instances and
validate the annotators in the labeling process.

One of the other major challenges in crowdsourcing or collaborative systems is managing
the expertise of the crowd. The crowd have different backgrounds and intellectual ability
which make the feedbacks noise prone. One way to tackle this problem is to rank the an-
notators based on their reliability and distribute the labeling process appropriately. One
other way is to train the crowd with appropriate domain specific examples and increase their
competence. This requires a proper representation of the crowdsourcing scenario. Crowd-
sourcing raw sensor data is challenging as it is very difficult to analyze and find meaningful
patterns in the data to associate with a class for a general worker. We have to provide
some sort of semantic information to the worker to help them understand the scope of the
problem domain. In this work, we discuss about data representation ways for active learning
and crowdsourcing sensor data to scale and deploy practical activity recognition applications
among a community of individuals.

1.1. Our Contributions

Most of the proposed active learning model focused on finding the most informative
point using uncertainty measurement or maximizing error reduction. For some classifiers a
basic intuition is followed - any data instance closest to the decision boundary is considered
important and thus queried. Some approaches are strictly for SVM classifiers where the
intention is to identify the instances from feature space which will maximize the hyperplane
margin. These approaches can yield good results and improve the overall performance,
however they tend to ignore the prior distribution of the feature space. Prior distribution can
be useful for active learning and ignoring them can create sampling bias in the overall system.
In this paper we propose a cluster based active learning model for activity recognition.
Combining clustering with active learning has been proposed in [15] [16] [17]. But postulating
them for practical human-in-the-loop applications are still in its infancy. The effectiveness of
active learning is significantly dependent on the quality of the labels acquired from prompting
queries. When multiple annotators are involved, the probability of introducing noisy inputs
increases. On the other hand some of the annotators might be reluctant to provide labels
to the queries. In these cases the throughput of active learning is largely hampered. It
is necessary to model an active learning algorithm which can handle noisy and reluctant
annotators.

In our proposed model, we first create hard clusters without explicitly differentiating the
number of clusters, rather focusing the minimum number of clusters in association with the
existing number of labels in the label space. We posit the most informative instances in a
cluster and, subsequently acquire label for them using our novel objective function and finally
reinstate the cluster label through empirical validation. We also model an annotator selection
model to capitalize the efficient annotators so that the classifier model remains stable. In
summary our proposed active learning enabled activity recognition model contains following
salient contributions:
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• We propose a dynamic k-means clustering algorithm for creating clusters of unlabeled
data.

• We propose an objective function to find the most informative data instance in the
cluster.

• We propose an annotator selection model when multiple labelers with varying expertise
are present.

• We propose to include an unsure option in our model to provide freedom to annotators
in case of complex data instances.

• We model our active learning algorithm when no ground truth information is available.

• We validate our model using real life data traces and compare our model with other
viable active learning approaches such as disagreement based approach.

• We present a data representation technique for crowdsourcing smart home data and
discuss its implication on active learning assisted activity recognition.

The paper is organized as follows. Section 2 presents the active learning methodologies. The
design architecture of our proposed model is presented in Section 3. K-means clustering
and optimizing heuristic are illustrated Sections 4 and 5.The objective function for filtering
informative instances is discussed in Section 6. In Section 8, we propose a worker selection
model for effective active learning. In Experimental results and comparison of our proposed
model with existing strategies are presented in Section 11. In Section 12, we discuss data
representation techniques for making active learning and crowdsourcing applicable in large
scale activity recognition domain. We articulate the challenges in Section 13 and conclude
with future research directions in Section 14.

2. Related Works

Active learning algorithms aim to ease the learning complexity and cost by sequentially
selecting optimal number of informative unlabeled data instances to query for their label
in order to minimize the prediction error of the classification model. Studies have shown
that active learning can help reduce the labeling effort in different domains [18] [15]. The
most important step for active learning is to define the informativeness measurement for
data instances. In a smart home setting a wearable sensor reading may belong to watching
television, a high level activity class and sitting micro activity class. In such cases the learner
can consolidate both feature and label space (feature-label pair) instead of relying on the
distinct features for evaluating uncertainty. Evaluating instance uncertainty is a common
approach for measuring the informativeness of a data instance. The uncertainty is measured
with respect to the feature space. In this approach the learner can focus more on the data
instances which are confusing based on the uncertainty score. Least Confident, Margin Sam-
pling and Entropy learning are the most popular informativeness measures [19]. Another
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uncertainty resolving approach is searching through hypothesis space where the associated
classifier maintains a set of candidate hypothesis space known as version space. The goal
of the active learning algorithm is to minimize the cardinality of the version space which
depicts maximal change to the current classification model. One popular and significant
contribution in this approach is disagreement based active learning [20]. Another approach
Variance Reduction chooses the instances that minimize the square loss of a learner [21].

Some active learning works have proposed to augment instance correlations where an
utility metric from a sample or sample-label space has been defined as a combination of an
uncertainty function and a correlation function. In feature based correlation, a similarity
measurement [22] or a correlation matrix [23] on features has been utilized to compare pair-
wise similarities of instances, so the informativeness of an instance is weighted by average
similarity on its neighbors. Label correlation is widely used for multi label learning. Con-
ventional active learning algorithms considers an oracle to provide the correct label for each
query always which is not ideal. Many of the existing active learning strategies are prone to
introduce noise on learning models, as the process of finding an optimal boundary between
two classes involves label queries that have lower proximity to the decision boundary and
usually these labels induce large noise. The authors of [24] have proposed an algorithm A2

Learning which works in presence of arbitrary forms of noise. [25] uses a randomized query
mechanism and includes importance weights in the calculation of empirical error rates, to
compensate for the bias in the sample so that it is possible to obtain rough estimates of the
excess empirical error rates. we define the label complexity of A2 learning [24] by using the
disagreement coefficient has been described in [20]. The authors of [26] proposed a bayesian
based active learning algorithm where queries are selected sequentially to reduce uncertainty.
The authors demonstrate that instead of focusing on minimizing uncertainty, the aim is to
drive uncertainty into a single decision region as quickly as possible. In [16] the author used
a hierarchical clustering for unlabeled instances and then a data instance is picked randomly
from the cluster. [15] tries to reduce the classification variance by employing Query By
Committee (QBC) method.

The active learning process is largely dependent on the annotator model. Theoretical
work [27] on learning a binary classifier based on interactive label queries made to a single
labeler has been proposed in [28] [29] [30]. Recently modeling with multiple annotators has
become a major research area in the active learning and crowdsourcing domain. Repeated
labeling by multiple annotators has been employed in some of the works [31] [32] [33]. The
models proposed in these works identifies which query should be repeated to improve the
overall classification accuracy. The modeling of annotators expertise and then exploiting
efficient annotators in a greedy approach has been proposed in [34] and [35]. However
these approaches failed to model individual annotators properties. The authors of [36] later
proposed an annotator learning model where annotators are chosen randomly. [37] [38] learns
individual annotator parameters and ranks them to help which labeler to query. Zhang et
al proposed an active learning model with multiple strong and weak labelers and handle the
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noise introduced by weak labelers [39].

3. Overall Design & Challenges

Our proposed model is comprised of two significant steps. First formulate clusters for the
unlabeled data instance pool (U) using K-Means clustering. The fundamental motivation
behind using clustering over other active learning strategies is computational complexity.
Though uncertainty sampling based strategies are computationally inexpensive, they tend to
be biased and become over confident. Other popular disagreement based strategies like Query
By Committee (QBC) uses the hypothesis space to form the committee, and maintaining a
hypothesis space demands a lot of computation. For a practical and real life system, we need
an efficient strategy with low computational complexity. Clustering based strategies reduces
the overall complexity of the active learning algorithm. Dasgupta et al. [16] used hierarchical
clustering which becomes computationally expensive for large data sets. K-Means clustering
is a widely used partition clustering method and if employed with proper heuristic, K-means
can achieve linear time complexity. The clustering process follows a simple and easy way
to classify a given data set through a certain number of clusters (let us assume k clusters)
fixed beforehand. The idea is to identify the center of the clusters - centroids, and then
associate the data instances to the closest centroid and formulate clusters. However the
computational complexity becomes NP Hard. One other challenge for applying K-Means
clustering is that we have to postulate the number of clusters explicitly. For building an
adaptive and spontaneous activity recognition model to discover unseen activities, it is not
practical to posit the number of clusters beforehand. We iteratively run the clustering until
we find a stable set of clusters with minimum clustering error. We decrease and control
the computational complexity of K-Means clustering by using Elkan’s heuristic [40]. We
apply a pool based sampling strategy for constructing instance pool (U) as it has been used
in practice [41] [42] [43]. We delve into the practical application of active learning and
particularity for smart home activity recognition where a multitude of ambient and wearable
sensor data streams are abundant. Thus we design a sampling approach based on a pool of
unlabeled data instances and then pass it to our active learner.

After compiling the clusters out of unlabeled data instances pool, we find out the most
informative data instances and query them accordingly. We also incorporate the clusters
with unseen activities in this underlying process. In order to find the most informative data
instances, we formulate an objective function which is constructed using entropy measure-
ment and a similarity coefficient. The similarity coefficient for any data instance is calculated
by the distance measurement between the points in its cluster and other surrounding cluster
centers. Fig. 1 depicts this entire active learning enabled activity recognition model.

4. Background

Given n points {x1, x2....., xn} ∈ Rd the goal of K-means is to find K cluster centers
{c1, c2...., cm} ∈ Rd and assignment {q1, . . . , qn} of the points to the centers. K-Means
clustering tries to find the position of the cluster centers and minimize the distance of the
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Figure 1: Overall framework for active learning inspired activity recognition.

data instances in Eqn 1. K-means is obtained for the case p=2 ( l2 norm), because in this
case the optimal centers are the means of the input vectors assigned to them.

E(c1, . . . , ck, q1, . . . , qn) =
n∑

i=1

‖xi − cqi‖ (1)

Minimizing the objective E is in general a difficult combinatorial problem, so locally optimal
or approximated solutions are sought instead. E is also the average reconstruction error, if
the original points are approximated with the cluster centers. Thus K-means is used not
only to group the input points into cluster, but also to quantize their values. The basic K-
means algorithm alternate between re-estimating the centers and the assignments. Combined
with a good initialization strategy and potentially, by re-running the optimization from a
number of randomized starting states, this algorithm helps reduce the complexity of handling
exponential state-space of active learning and increase efficiency in practice. However, despite
its simplicity, simple K-means is often too slow. Thus we consider Elkan’s algorithm [40],
which uses the triangular inequality to cut down significantly the cost of basic K-means.

5. Cluster Heuristics

Elkan’s algorithm [40] is different than Lloyd alternate optimization algorithm (Lloyd’s
algorithm) which calculates the triangular inequality to mitigate many distance calculations
when assigning data instances to clusters. Although this heuristic is much faster than Lloyd,
but it needs storage proportional to the number of clusters. which makes it difficult to
operate in case of large number of clusters. The base of this algorithm is that, if a centroid
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update does not move data instances much, then most of the instance to center distance
computations can be avoided when the assignments are recomputed. To distinguish which
distances need evaluation, the algorithm bounds the distances by lower and upper bound
using triangular inequality after a center update. Elkan algorithms uses two key observations.
First, one has

‖xi − cqi‖ ≤ ‖c− cqi‖/2 ⇒ ‖xi − cqi‖ ≤ ‖xi − c‖ (2)

Thus if the distance between xi and its current center cqi is less than half the distance of
the center cqi to another center c, then c can be skipped when the new assignment for xi is
searched. Checking this requires keeping track of all the inter-center distances, but centers
are typically a small fraction of the training data, so overall this can be a significant saving.
In particular, if this condition is satisfied for all the centers c 6= cqi , the point xi can be
skipped completely. Furthermore, the condition can be tested also based on an upper bound
U(x) of ‖xi − cqi‖. Second, if a center c is updated to ĉ, then the new distance from x to ĉ
is bounded from below and above by

‖x− c‖ − ‖c− ĉ‖ ≤ ‖x− ĉ‖ ≤ ‖x− ĉ‖+ ‖c+ ĉ‖. (3)

This allows to maintain an upper bound on the distance of xi to its current center cqi and a
lower bound to any other center c.

U(x)← U(x) + ‖cqi − ĉqi‖ (4)

L(x, c)← L(x, c)− ‖c− ĉ‖. (5)

Traditional K-means clustering needs prior definition of number of clusters. But if data
instances of unseen classes are present in the data pool, they will be considered as outliers
in the clustering process. Having outliers in the feature space can significantly decrease the
performance of the clustering algorithm if the number of clusters are not properly defined.
From these motivations we choose to apply an incremental K-means clustering where at
each iteration we increase K and record the overall error for our clustering using the error
function in Eqn. 6. The minimum error depicts the best clustering for the data set and the
corresponding number of k cluster.

J =
k∑

j=1

n∑

i=1

‖x(j) − cj‖2 (6)

6. Measuring Informativeness

After clustering the unlabeled data instances, our task is to figure out the most infor-
mative data instance in different clusters. [16] proposed random sampling for labeling the
data. Instead of using random sampling we propose to use uncertainty sampling to choose
the most informative instance. One challenge is to differentiate between outliers and most
informative data instances as outliers will have much higher uncertainty like the most infor-
mative instances. To represent whether a data instance with high uncertainty is an outlier or
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not, we calculate the silhouette coefficient [44], S
(xi)
c for each data instances. For each data

instance xi, let a(i) be the average dissimilarity of xi with all other data within the same
cluster. a(i) interprets how well a data instance xi is assigned to its own cluster. Where
smaller value of a(i) indicates better assignment of xi. The average dissimilarity of point xi
to a cluster c is defined as the average of the distance from xi to points in c. Let b(i) be
the lowest average dissimilarity of xi to any other cluster, of which xi is not a member. The
cluster with this lowest average dissimilarity is said to be the “neighbouring cluster” of xi
because it is the next best fit cluster for point xi. We now define a silhouette:

s(i) =
b(i)− a(i)

max{a(i), b(i)} (7)

s(i) =





1− a(i)
b(i) , if a(i) < b(i)

0, if a(i) = b(i)
b(i)
a(i) − 1, if a(i) > b(i)

(8)

From Eqn. 8 it is evident that −1 < s(i) < 1. For s(i) to be close to 1, we require
a(i) � b(i). As a(i) is a measure of how dissimilar xi is to its own cluster, a small value
means it is well matched. Furthermore, a large b(i) implies that xi is poorly matched to
its neighbouring cluster. Thus an s(i) close to 1 means that the instance is appropriately
clustered. If s(i) is close to negative one, then by the same logic we note that xi would be
more appropriate if it was clustered in its neighbouring cluster. An s(i) near zero means that
the instance is on the border of two natural clusters. The informativeness is measured by the
entropy of the instances. The entropy of an instance is defined by the following equation:

eθ(x) = argmax
x

Hθ(y|x)

= argmax
x

(−
∑

y

Pθ(y|x) logPθ(y|x)) (9)

We combine this entropy measurement with the S
(xi)
c to filter out the most informative

points. So the final objective function fc for finding the most informative point becomes

fc(x) = argmax
x
{eθ(x) . S(xi)

c } (10)

By using Eqn. 10, the points which are properly clustered and has higher entropy values
are chosen. The points which has S

(xi)
c = 0 or negative values might also be important. So

instead of discarding those data instances, we randomly pick instances and query them. An
instance with S

(xi)
c closer to zero is close to the boundary of two different clusters. If we have

the same label as other data instances in that cluster, we do not have to change the cluster,
but if different label is received we have to rearrange our cluster with respect to the received
label. In Algorithm 1 we demonstrate the full active learner with K-means clustering.
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Algorithm 1 Active Learner with K-Means Clustering

1: Input: U = A pool of unlabeled instances {(x)u}Uu=1,
mink = Minimum number of clusters,
θ = An error threshold.

2: Output: Clustered classification of U and most informative data instances in each
cluster.

3: for K = mink do
4: while Jcurrent > θ || K = mink do
5: for Each xi ∈ U do
6: if xi is a candidate centroid then
7: Compute L(xi, c)− ‖c− ĉ‖
8: Find the current assignment qi and bounds U(xi) by finding the closest centers

to each point
9: end if

10: end for
11: Estimate Center and Quantize the data instances in U to associate them with a

cluster c.
12: Compute the Error Jcurrent using Eqn. 6.
13: K = K + 1
14: end while
15: end for
16: for every xi ∈ U do
17: Calculate S

(xi)
c using eqn 8.

18: Calculate the objective function fc(x) using Eqn. 10.
19: Choose the instance with highest fc(x) and query for label.
20: end for
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7. Label Complexity

In order to identify the effectiveness of an active learning algorithm we have to define
Label Complexity. Label Complexity denotes the number of queries required to train a
approximately correct classifier while employing active learning. So we are interested in
finding the upper bound on the number of queries required. The label complexity can be
much smaller than the sample learning complexity of a passive learning algorithm. Let Lc

be the label complexity of an active learning algorithm defined as P (err(ht) ≤ ε) ≥ 1 − δ,
where ht is the output hypothesis after t-th iteration and err is the error rate of ht. So label
complexity Lc is the number of labeled instances required to train a classifier with error rate
less than ε.

During each iteration in our clustering algorithm k(k − 1)/2 pairwise distances between
all centers are recomputed (Algorithm 1, line 4). Recomputing the centroids using Elkan’s
heuristic (Section 5) requires additional O(N) distance calculations. To update the lower and
upper bound K distances between current and new centroids must be calculated which gives
us O(N + K2) distance calculations at each iteration. As the centroids calculation become
close to convergence the distance calculation becomes less common. For fixed K this is our
general bound, but our dynamic clustering algorithm iterate while adjusting the value of K.
So for I iterations the true general bound for our clustering algorithm will be O(N + K2)I .
After calculating our objective function fc(x), the bound becomes {O(N) +O(N + K2)I}.
Then the true label complexity of our active learning algorithm depends on the number of
cluster k as

O((
k

ε
) log

1

ε
+

1

ε
log (

1

δ
))

8. Selecting Annotator

We filtered out the most informative data instances in the previous step, but it is quite
impractical to presume in a real life environment that the annotators are going to provide true
and correct labels all the time. As the search for most informative data instances is important
so is getting the true label for them, otherwise unnecessary noise draws on our model. In
order to build practical active learning enabled activity recognition model, choosing the right
annotator is crucial and it becomes more challenging when the environment is cohabited by
multiple inhabitants. As all annotators are not expert in annotating a specific activity class,
we assign a sensitivity score to each annotator for each activity class. The sensitivity is
defined by the number of labels correctly labeled by an individual annotator.

µcsen =
correctly labeled instances of class c

number of points queried of class c
(11)

Initially when an annotator has not labeled any examples from class ci, we assign a sensitivity
score of µcisen = 0.5. Using the sensitivity score, we pinpoint the most efficient annotator.
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To further strengthen the querying process, we choose the annotator who has annotated a
similar data instance with high sensitivity which is annotator’s specificity δspec. For this we
first monitor j neighboring data instances who are closer to x. For our experimental purpose
we chose j = 4.

δspeci =
1
k
×∑j

i=1 µ
ak
xi

1 + 1
k
×∑j

i=1 |x− xi|
(12)

In Eqn. 12, µak
xi

is our sensitivity of annotator, ak. |x−xi| is the euclidean distance between
the neighboring data instances. Our active learner is set to select the annotator by the
following Equation 13.

i = argmax(δspec1 , δspec2 . . . , δspeck) (13)

After selecting a subset of annotators we ranked accordingly based on their specificity score
and query the data instance to top 4 annotators. If the confidence of the data instance is
less than 80% then we keep on querying until it reaches confidence level of 80%. Here the
confidence level for a data instance means the ratio of number of labels and total number of
query. If xi receives 6 labels of class cj out of total 10 queries, then the confidence score is
100× 6

10
= 60%.

9. Unsure Option

We want to grant freedom to the annotators while they provide labels to the queries. It
is possible that the provided scenario or setting may be confusing to the annotator. So we
will provide an unsure option to tackle such scenarios. This will also help to relax the effort
needed from the annotators for difficult data instances. Instead of providing random labels,
the unwilling annotators are able to provide unsure label which help noise reduction. Let us
denote C as our target classifier and after i iterations it transforms into Ci. As fc(x) is our
objective function, the queried instance picked in the (i+ 1)-th iteration is-

xi+1 = argmax
x∈Ui

fc(x|Li, Ci, S(x)
ci

) (14)

Here Ui is the current set of unlabeled instances, Li is the current labeled data and S
(x)
ci

is the silhouette coefficient of x. We have defined how specific an annotator (δspeci) is in
section 8. Now we define another parameter to represent the overall specificity of the all the
existing annotators ω(x) which is a function of δspeci . Now if we can rewrite the equation 14
as -

xi+1 = argmax
x∈Ui

fc(x|Li, Ci, S(x)
ci

) . ω(x) (15)

We have to define ω(x) with respect to δspeci . For unsure option we assign x = 0 and
x = 1 otherwise. In Eqn 16 we define our ω(x) as a disjunction function where x1 ∨ x2 = 0
if and only if x1 = 0 and x2 = 0 otherwise x1 ∨ x2 = 1. Also we can see that 0 < ω(x) < 1.
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ω(x) = ∨t∈T γ(δspeci(x)) (16)

The specificity model of the annotators may not be definite in the early stages of learning,
therefore the most informative instances are unlikely to be queried event if annotators who
can provide correct label exists. As our primary target for our dynamic K-means clustering
is to minimize the error function J (Eqn 6), we rewrite Eqn 14 and 15 as -

xi+1 = argmin
x∈Ui

(
k∑

j=1

n∑

i=1

‖x(j) − cj‖2) +M(1 − ω(x)) (17)

Here M is a large constant which confirm the instance x for which ω(x) < θ would not
be selected. θ is a threshold which we empirically define. We select our suitable annotator
using Eqn 13. After getting the label for the selected instance, we re-organize our clusters
and update the specificity of the annotator accordingly.

10. No Ground Truth

One of the major challenge in active learning is how to validate whether the annotators are
providing correct labels or not when no ground truth information is available. This problem
becomes more complicated as different annotators have different expertise. Although it is
possible to disregard this problem by only relying on one annotator who will label his own
activity data instances. The problem with single annotator model is - if the user is reluctant
to provide labels to the queries, then active learning will be of no significant use. One of the
other motivation for dealing with no ground truth information is when new unseen classes are
introduced. New unseen classes have no prior data instances and their labels are nonexistent
in the label space. As the expertise of individuals have an influence on the provided label,
so it is necessary to devise a model to estimate the more probable label for data instances
with no ground truth information.

10.1. Model Definition

Let us consider X to be our instance space with instances {x1, x2, ....., xN} and Y to be
our label space that have been provided by our annotators. The existing labels in Y are
observed labels whereas the true label space is Z. In ideal case Y ≡ Z. Let us define random
variables x ∈ X and z ∈ Z for input data instances and true label respectively. Similarly we
define random variables y(t) provided by labeler t over label space Y where l = {1, 2, 3...., L}.
There is a possibility that Y is not fully observed as some y(l) will be missing because the
annotator might not provide any label for the query. The probabilistic graphical model for
our random variables are shown 2.

We have defined our necessary random variables, now we formulate the conditional dis-
tribution as following
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X ZY1 Y2 Y3 YL..........

Y

Figure 2: Graphical Model for input data instances X, Labels provided by L annotators Y and the true
label space Z of X data instances.

P (Y, Z|X) =
∏

i

p(zi|xi)
∏

l|l∈Li

(p(y
(l)
i |xi, zi)) (18)

In Eqn 18 Li denotes the set of annotators who provided a label for i-th data instance.
It is evident from the this equation that the label provided by the annotator is influenced
by the true label z and the observed data instance x. In order to calculate the conditional
distribution we need to define p(y

(l)
i |xi, zi) and p(zi|xi). We define a Gaussian model (Eqn

19) to calculate these parameters as our input space X is a continuous domain in temporal
and spatial domain. In our Gaussian model σ and ω are variance and the prior probability
of j-th distribution respectively.

p(y
(l)
i |xi, zi) =

k∑

j=1

ωjN(y
(l)
i |zi, σl(xi)) (19)

We consider that p(y|x, z) 6= p(y|z) because the labels provided by the annotators not
only depend on their expertise but also on the type of the presented data. Annotators will
be more comfortable to label data instances which are more familiar to them. For example,
some annotators are familiar with cooking activity more than others. We capture this input
dependent variability by taking the variance with respect to x and specific to each annotator
l. Since y(l) is a multinomial discrete random variable we take σl(xi) as a logistic function -

σ(xi) =
eβ

(c)
0 +x.β

∑
c e

β
(c)
0 +x.β

(20)

It is possible to model our another parameter p(zi|xi) according to any distribution. For
simplicity we model p(zi|xi) to be a multinomial logistic function as well.

10.2. Maximum Likelihood

We defined our model and now we need to estimate the logistic function . We can
calculate the parameters of σ(x) by maximizing the log-likelihood function. As y(l) can take
different discrete class labels, we model y(l) as a poisson random variable. Then the likelihood
function would be
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p(y(l)|x;σ(x)) =
n∏

i=1

n!

(n− i)!i! p(xi)
yi (1− p(xi))n−yi (21)

The log likelihood then becomes as Eqn 22.

l[σ(x)] =
n∑

i=1

{log
n!

(n− i)!i! + yi log p(xi) + (n− yi) log(1− p(xi))}

=
n∑

i=1

{log
n!

(n− i)!i! + yi(log
p(xi)

1− p(xi)
) + n log(1− p(xi))}

=
n∑

i=1

{log
n!

(n− i)!i! + yiσ(xi)(1 + xi) + n log(1− p(xi))}

=
n∑

i=1

{log
n!

(n− i)!i! + yiσ(xi)(1 + xi) − log(1 + eσ(xi)(1+xi))} (22)

To maximize Eqn 22 we employ Expectation maximization algorithm.

E Step. In this step, we need to calculate the expectation of our log likelihood function.
Conditional expectation of our log likelihood logp(y(l), z|x;σ(x)) is defined as following where
β̄0 and β̄ are parameters for previous step.

E[log p(y(l), z|x;σx)|σ̄(x)]

=
∑

y

p(y(l)|z, σ̄(x)) log p(y(l), z|x;σ(x))

=
∑

y

pσ̄(x)(y
(l), z|x) log pσ(x)(y

(l), z|x) (23)

M Step. In this step, we need to maximize Eqn 23 which is difficult to optimize because it
contains the logarithm function of the sum. To solve this we take a partial derivative of 23
with respect to our parameter δl(x) and calculate the gradients ∂x

∂δl(x)
. By taking the partial

derivative equal to zero we solve the equation.

10.3. Estimating Ground Truth

We can estimate the ground truth even when new unseen class is introduced by the
following probability distribution

p(z|yl) =

∫ ∏

l

p(yl|z, x)p(z|x)dp(x) (24)

As when new unseen class label is introduced in the label space we have no knowledge
about the new sample’s prior distribution p(x). In such cases we can gain knowledge from

15



previously seen data instances. We take a sample X from our existing input sample space
X = {x1, x2....xs} and then we calculate the posterior probability by

p(z|yl) ≈ 1

S

S∑

s=1

p(z|xs)
∏

t

p(y(l)|z, xs)

11. Experimental Results

In this section we validate our active learning algorithm for activity recognition and com-
pare the outcome with other popular strategies. We set up a smart home environment with
PIR motion sensors and object sensors on different household appliances. The PIR motion
sensors were mounted on three different locations of a single bedroom apartment (bedroom,
living room and kitchen). The object sensors were mounted on the broom, trashcan, laun-
dry basket, dustpan and phone. The object sensors have built in compass and accelerometer
which provided the usage and orientation of the objects. Two door sensors were placed on
the apartment door and on the closet door. In our experiment we considered only single
inhabitant environments. We had the following activities in our dataset - 1) brooming, 2)
cooking, 3) doing laundry (washing), 4) taking out the trash (cleaning), 5) eating, 6) sleeping
and 7) using land line telephone (talking).

We trained our passive learner with the first four activities and left the last three activities
for our active learner to discover. We have used Decision Tree classifier (J48) as our passive
learner. We extracted features from the ambient motion sensors which include the start and
end of the sensor events, time span of the event within a k-event window, and count of events
in the window. We collected data from 10 participants who reside in a retirement community
[45] - IRB (#HP-00064387). Each participant provided around 24 hours of continuous sensor
data. Average age of the participants was 85. We evaluated our cluster performance using
normalized mutual information (NMI) using ground truth. Both the activity class label and
clustering assignment are considered as random variables in NMI. It measures the mutual
information between the two data instances, and normalizes it to a zero-to-one range. Let C
be the data instance representing the cluster assignments of instances, and K be the random
variable representing the class labels of the instances, the NMI is computed by the following
equation:

NMI =
2I(C;K)

H(C) +H(K)
(25)

Here I(X;Y ) = H(X) − H(X|Y ) is the mutual information between random variables
X and Y. For our experimental validation, we focus on the following specificities for our
experiments: 1) Correctly classified instances by our active learner 2) Instance selection
time 3) Mean Absolute Error 4) Number of average queries per data instance for gaining
confidence level of 80% 5) Annotator selection time 6) Impact for introducing new unseen
activities.
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Figure 3: Smarthome System Setup.

11.1. Smarthome System
We have used CloudEngines PogoPlug [46] as our central component which interfaces

with the motion sensors and object sensor tags. We built a custom linux kernel for the
PogoPlug and developed tools to communicate with the sensor tags. The PogoPlug works as
a bridge between the Sensor Tags and a standard 802.11N network. Tests have indicated the
device is stable in this capacity, and recovers from power loss and outages on the external
networks without any issue. The PogoPlug is also successfully doing NAT translation in
order to bridge additional Ethernet devices on to the network. We are streaming and storing
the data in real time in our lab server. We have used Foscam IP camera for collecting
ground truth. Due to bandwidth limitation it was difficult to stream the video remotely, so
we recorded the video in SD card. Since video violates the privacy issue, each participant
provided only two hours of video data. In these two hours the participants were asked to
follow a script to perform several tasks related to our activity list. Rest of the 22 hours were
not recorded which is our test data. Figure 3 demonstrates the components of our system
setup.
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Figure 4: Precision, Recall and F1 Measurement of
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Figure 5: Clustering Performance

11.2. Supervised Model

In figure 4 the precision, recall and F1 score for each activity is shown for our decision
tree classifier. It is evident that the cooking activity has lower accuracy than other activities.
As in our experiments, we have placed object sensors on various appliances and equipments,
so it was possible to pin point an activity by tracking the usage of the object sensors. For
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example if we detected any movement for the laundry basket, we labeled the data instance of
the motion sensor as cleaning. As for cooking activity there was no object sensor, so it was
difficult to track down the activity properly. In some cases the objects were just moved or
handled, not used for the corresponding activities which imposed noise in the dataset. For
this reason we filtered the dataset by taking an assumption for the duration of each activity.
If the duration of the performed activity was less than the threshold then we discard the
data instance for training. The thresholds were defined in an empirical manner. Also some
of the participants had pets in their apartment which introduced more noises in the dataset
as the pets move around the house abruptly.

Algorithm 2 Query By Committee

1: Input: U = A pool of unlabeled instances {(x)u}Uu=1

L = A pool of unlabeled instances {(x)l}Ll=1

k = number of iterations
2: Repeat k times
3: Generate a Committee of Classifiers C∗

4: ∀xi ∈ U , compute disagreement xiV E using 26 based on the current committee.
5: Select a subset S of instances from U that maximizes utility.
6: Query instances of S
7: Remove S from U
8: Update L by adding S
9: Return
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Figure 6: Correctly classified in-
stances for our active learner.
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Figure 7: Correctly classified
instances for maximum entropy
sampling.
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Figure 8: Correctly classified in-
stances for least confidence sam-
pling.

11.3. Active Learning Experiments

We have mentioned the criteria for our active learning experiments beforehand. We ap-
plied the active learning algorithm in a 10-fold cross validation and pool based sampling
manner. We initially started with a small labeled data set (5% of train data), and then
made queries by using different active learning strategies. The results are shown for 100 iter-
ations. We compare our algorithm with other popular query strategies - maximum entropy,
least confidence and vote entropy or Query by Committee (QBC). QBC is a very effective
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Figure 9: Correctly classified in-
stances for Query By Committee
(QBC).
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Figure 10: Mean absolute error
for our active learner.
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Figure 11: Mean absolute error
for maximum entropy sampling.
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Figure 12: Mean absolute error
for least confidence sampling.
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Figure 13: Mean absolute er-
ror for Query By Committee
(QBC).
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Figure 14: Instance selection
time for our active learner.

0

50

100

150

200

250

300

350

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

T
im

e
 (

m
s)

 

Iteration 

Figure 15: Instance selection
time for maximum entropy sam-
pling.
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Figure 16: Instance selection
time for least confidence sam-
pling.
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Figure 17: Instance selection
time for Query By Committee
(QBC).

alternative approach to uncertainty sampling which has been applied in many classification
problems. QBC manipulates the version space and at each iteration it maintains a committee
- an effective set of hypotheses based on current training set. The committee evaluates the
potential utility of the unlabeled data instance. This utility measure is also called disagree-
ment measure. The disagreement measure for QBC was defined by the following equation
where Pc(y|x) is the average probability that y is the correct activity label to the committee.
The steps of a generalized QBC is show in algorithm 2.

xV E = argmax−
∑

y

Pc(y|x) logPc(y|x) (26)

First we cluster the unlabeled data set using our dynamic k-means clustering algorithm.
In figure 5 we show the intra and inter cluster distance for our dynamic k-means clustering
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algorithm comparing to simple k-means algorithm. We discuss and compare our active
learning algorithm based on each analysis criterion in the following:

11.3.1. Correctly Classified Instances

One of the most important performance measurement for an active learning algorithm
is how many data instances were correctly classified. In figure 6 correctly classified instance
for our algorithm over 100 iterations is plotted. Most of the query strategies show similar
results and almost 75% of the instances are correctly classified. However we monitor a lot
of changes for least confident sampling as least confident sampling only considers the best
prediction and eventually throws away other important information.

11.3.2. Instance Selection Time

Instance selection time depicts the speed of the active learning algorithm. Average in-
stance selection time for all of the strategies were close to 200 ms (figure 14, 15, 16, 17).

11.3.3. Mean Absolute Error

Mean absolute error expresses the difference between the predicted value and the actual
value. In figure 10, 11, 12 and 13 the trend of mean absolute error at each iteration for the
query strategies are plotted. For our active learner (figure 10), the algorithm converges to
lower mean absolute error than other approaches. Mean absolute error for maximum entropy
sampling was much higher. After investigating we found that maximum entropy sampling
tends to be biased and over generalized. As a result first the mean absolute error started to
decrease and in the end it started to increase.
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Figure 18: Accuracy of unseen activities.
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Figure 19: NMI for 100 queries.

11.3.4. Average Number of Queries

In our experiments we did not train our supervised model with the acquired label using
active learning till the label confidence is 80%. Average number of queries for 100 data
instances was ≈ 7. Average number of queries for each activity is shown in table 1. From
the table it is visible that for Cooking, Eating and Sleeping activity the average number
of queries were higher. As for these activities there was no object sensors involved, it was
difficult for the annotators to take the decision. For sleeping activity, it was the highest as
the movements detected while sleeping are mislabeled frequently by the annotators. Also
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Table 1: Average number of queries for each activity for gaining confidence level 80%

Activity Avg. Number of Queries
Brooming 2
Cooking 9
Washing 3
Cleaning 5
Eating 12

Sleeping 16
Talking 3

mostly the eating activity was performed in the living room area, where the participants
were frequently sitting and doing their chores. This created confusion among the annotators.
Cooking was another difficult high level activity to properly label as just being in the kitchen
does not indicate that the participant was cooking. In figure 19 we show the change in NMI
for our clustering algorithm for different active learning strategies. NMI close to 1 means
better correlation. Our active learner converges to 1 faster than other query strategies.

11.3.5. Introducing Unseen Activities

We left out three activities (eating, sleeping and talking) while training our supervised
learning model S. Using active learning, we acquired labels of these unseen activities. After
querying them, we trained our supervised model with the received new activity labels. In
figure 18 we show the accuracy of S for these new activities. Talking achieved the highest
accuracy because of the object sensor attached to the phone. Whenever a movement of the
phone is involved, the supervised learner predicts the motion sensor event as talking. For
other two activities it was difficult as living room and bedroom involved so many movements.
The accuracy of recognizing sleeping is better than eating because the participants performed
more variety of activities in the living room than in the bedroom. And also sleeping during
night was properly classified by our supervised learner than sleeping at daylight. After
including the collected activity labels using our active learner, we retrained our supervised
learning model. Initially we labeled our training data using a labeled data set L consisting of
21, 014 instances. On the other hand we had an unlabeled data set U consisting of 126, 874
samples. Initially the average accuracy of S was ≈ 81. If we consider only the four activities,
after applying our active learning strategy the 87% accuracy was observed. If new unseen
activities are introduced, 77% accuracy is achieved.The actual accuracy decreased, because
initially the recognition capability of new unseen activities are low. The mentioned accuracy
is reported after 100 iterations, so we increased our iteration to 300 and we achieved 79.5%
accuracy. So if we query more data instances using our active learner we can achieve better
accuracy.

11.4. Annotator Selection

In this experiment, we validate our annotator selection model and the impact of unsure
options. Each annotator is modeled separately with respect to their expertise which means
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annotators are associated with class labels for which they are expert in labeling. An anno-
tator will provide correct labels with probability pt and give unsure feedback when the data
instance is confusing to them. We compare our model with other annotator selection models
ALC [47], IEThresh [33] and PMActive [48]. As we have already mentioned, introducing
wrong labels will enable noise in the model. The average number of wrong labels acquired
by these three models compared to our algorithm is shown in Fig 20. It is evident that by
providing unsure option we were able to mitigate the number of incorrect label introduced
by our active learning algorithm (Active Learner). In Figure 21 we show the increase in
accuracy while employing our annotator selection model with our active learning algorithm
and random sampling.

12. Data Representation for Crowdsourcing and Active Learning

Sensor data representation in a user friendly way is a huge challenge in crowdsourcing
domain. Even just applying active learning for querying the label from the same user de-
mands an effective and eloquent representation. One straight forward approach for querying
the user can be to ask what the user was doing at a certain timestamp. But all human
do not have the ability to precisely recall an event at a certain timestamp. Previous works
have proposed to annotate image or video recordings by the crowd [49] [50]. Although using
image or video based surveillance provides proper idea about the performed activities to the
crowd but it violates the privacy of the users.

It is certainly difficult to disjointly represent all the human activities, as there are activ-
ities which are similar in functional sense. For example, watching television and studying
both involves sitting. It is possible that they are performed at different locations in the
apartment, so we can pair activities with different indoor locations. [51] used a visual rep-
resentation of the motion sensor firing sequence and provided the apartment layout to assist
the crowd. But motion sensor activation not always provides a straight forward indication of

22



an activity. For example, a person might be in the bathroom just to look at the mirror and
the motion sensor will still be activated. In a multi-inhabitant environment this becomes
more complex. Object sensors can help us greatly in these cases. With proper usage data
of an object paired with motion sensor and location information can ideally pinpoint the
activity. Human activities are performed in a pattern. While being at home, people are
used to eat, cook, vacuum or perform other household activities in a certain pattern. For
example, a person may eat his lunch at a certain time in most of the days. Knowing these
activity patterns can also help a crowd to understand the functional and behavioral patterns
of the user. So while crowdsourcing, it is important to provide a semantic representation of
the user activity pattern so that we can collect noise free labels.

13. Discussion and Future Directions

The theoretical foundation of active learning is very rich and resourceful. Researchers
have proposed many effective approaches for active learning. But the problem is these so-
lutions are theoretically sound but computationally expensive. Simpler models like entropy
based uncertainty calculation are effective but they imposes bias and runs the risk of becom-
ing over confident on incorrect predictions. It is difficult to make computationally expensive
approaches applicable. Also not all the approaches perform the same in a specific domain.
Choosing the right approach with respect to the scope of the domain is very important for ac-
tive learning to be effective. In smart home settings, multiple heterogeneous sensors impose
various types of uncertainties like biased readings, failed sensors etc. In multi inhabitant
environment the situation is much more complex. On the other hand in multi inhabitant
settings, we can take advantage of the inhabitants by asking them to label each others data.
But still it is extremely difficult to differentiate overlapped sensor reading and individual’s
activity.

Due to the dynamic nature and a huge variety of human activities it is difficult to collect
the ground truth information for an activity learning model. We can record and annotate
data sets for training the system from scratch for individual house and individual person
but this will be extremely costly. So leveraging active learning can boost the ground truth
collection process. As the basic movements and locations of two or more activities can be
same, the probability that they will belong to a same cluster is higher. But automatic
discovery of similar activities is not handled in our proposed solution. In such cases we
have to consider overlapped clusters to properly separate two distinct activity classes. [14]
demonstrated an approach for overlapped activities, but the informativeness measurement
has not been discussed in their work.

One of the major challenges for making active learning and crowdsourcing practical is
the expertise of the crowd. The crowd will not always provide the labels correctly. Also the
crowd may not be able to provide labels for some instances at all. In some cases getting
label for a data instance from only one annotator will not be enough. Relabeling the data
instances by other crowd will further validate the consistency of the acquired label. For
handling noisy input from crowd this clear approach may be helpful, but still there is a
chance that noise will be introduced. As an example, we have to assume that the crowd is
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not expert and so it will be challenging for them to differentiate between similar activities.
Also if an unseen activity which is very much alike with an existing one is queried, the
crowd may not provide new class label and annotate it with existing label. This impose
both bias and noise in the classification model. So the crowdsourcing model should be able
persist an agnostic environment. Researchers have proposed to incorporate reliability of the
annotators as an important factor while querying the data. But opportunistically selecting
reliable user compulsively is not a good approach as it may annoy the annotator. For this
reason, cost-sensitive crowdsourcing has been gaining attention recently.

14. Conclusions

In this paper we have proposed and validated an active learning inspired adaptive activ-
ity recognition model to deal with the difficulties of collecting large amount of ground truth
information. Our proposed model can discover unseen new activities and include the new
activity class in the supervised learning model reliably. Prior works only considered a set
of pre-defined activities, whereas our model is dynamic and can discover unseen new activ-
ities spontaneously. We have also validated our model in a real life dynamic environment
and the experimental results show that our model outperforms traditional active learning
approaches. Our results also show that active learning with pre-clustering can accelerate
the informativeness measurement and supports faster convergence to optimal accuracy in
presence of our proposed model. In the current version of our work, we ran our experiments
in a single inhabitant environment and chose to monitor the activities which are disjoint. In
future we want to investigate active learning in a multi-inhabitant environment and cluster-
ing of similar activities in nature using overlapped clustering in agnostic settings. We have
also discussed about the data representation technique for active learning and crowdsourcing
as data representation is very important for making active learning applicable. In future we
also want look into more transparent data representation technique for building an effective
activity recognition framework.
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