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Abstract—Following healthy lifestyle is a key for active living.
Regular exercise, controlled diet and sound sleep play an invisible
role on the wellbeing and independent living of the people. Sleep
being the most durative activities of daily living (ADL) has
a major synergistic influence on people’s mental, physical and
cognitive health. Understanding the sleep behavior longitudinally
and its underpinning clausal relationships with physiological
signals and contexts (such as eye or body movement etc.) hori-
zontally responsible for a sound or disruptive sleep pattern help
provide meaningful information for promoting healthy lifestyle
and designing appropriate intervention strategy. In this paper
we propose to detect the microscopic states of the sleep which
fundamentally constitute the components of a good or bad
sleeping behavior and help shape the formative assessment of
sleep quality. We initially investigate several classification tech-
niques to identify and correlate the relationship of microscopic
sleep states with the overall sleep behavior. Subsequently we
propose an online algorithm based on change point detection to
better process and classify the microscopic sleep states and then
test a lightweight version of this algorithm for real time sleep
monitoring activity recognition and assessment at scale. For a
larger deployment of our proposed model across a community of
individuals we propose an active learning based methodology by
reducing the effort of ground truth data collection. We evaluate
the performance of our proposed algorithms on real data traces,
and demonstrate the efficacy of our models for detecting and
assessing fine-grained sleep states beyond an individual.

I. INTRODUCTION

Sleeping disorder plays as an indicator for many medical
conditions such as sleep apnea, COPD (Chronic Obstructive
Pulmonary Disease), Chornic renal diseases and various other
medical conditions [1]. Sleep quality is greatly correlated to
exhaustion, discomfort, depression and lack of concentration
during the day. The quality of sleep can affect the intuitive
symptoms due to the underlying disease. Clinical studies have
suggested that if the sleep quality is improved the underlying
symptoms of a patient might improve too. Early clinical sleep
studies used to be based on Polysomnography (PSG) [2]. By
monitoring patients biophysiological signals clinicians are able
to have good understanding of the sleep disorder the patient
is experiencing. As there has been a significant enhancement
in sensor technology, nowadays the researchers are also using
sensor technologies rigorously in sleep quality measurement.
Various commercial products like Fitbit [3], Actiwatch [4],
BASIS watch [5] etc are also available in the market to monitor
the quality of the sleep. But the measurement method for most
of these devices is focused on calculating the duration of sleep
which gives a very good insight on someone’s sleep hygiene.
Getting information on a more detailed sleep cycle is not
possible with these devices. Only BASIS B1 band [5] classifies

sleep stages (REM, light sleep, deep sleep) and provides the
means to identify patterns and triggers which are causing sleep
disturbances.

Existing sleep monitoring researches use supervised learn-
ing algorithms where they collect and label a set of training
data with some pre-defined classes which the system aims
to detect. The more labeled training dataset leads to a better
classification. As collecting ground truth is extremely difficult
without violating privacy concerns while sleeping, it is a
daunting task for test subjects and human annotators to label
the sleep states properly. Also identifying and classifying only
pre-defined sleep stages is not enough for medical diagnosis
sometimes. For example, current state of the literature does
not address if the patient is suffering from nightmare disorder,
muscle contraction etc frequently. In this paper we propose
a novel sleep monitoring model to classify previously unseen
various sleep states which will further improve patients sleep
hygiene by being able to pinpoint the causes of sleep distur-
bances. We train our model using supervised and unsupervised
learning algorithm and identify basic sleep states - Rapid
Eye Movement (REM), non-REM (NREM) sleep, awake,
movement, getting up from bed, getting up and sitting.

Wearable devices are now becoming a huge trend and
they are evolving rapidly by incorporating various sensors as
attested by the new release of smart watches such as Google
Android Wear [6], Intel Basis B1 band [5] etc. The world is
moving more towards wearable technology which is being used
in many health care applications [7]. We have used two differ-
ent wearable devices - EZ430-Chronos [8] and wActiSleep BT
[4] by putting them on the waist. After collecting the data we
apply a variant of gradient descent to build our classification
model. Then we apply importance weighted active learning to
label the uncertain data points and also incorporate previously
unseen sleep states. Active learning helps the annotation effort
greatly and improves the performance of classification model.
In order to discover abrupt changes on the data streams,
increase the classification accuracy, remove noises and provide
greater support for informativeness in active learning we
propose an online change point detection algorithm. Also we
show results of our proposed algorithm using publicly available
benchmark dataset [9] which provides sleep phases determined
by clinical polysomnography where the data was collected
using wrist worn device. The main contributions of the paper
are summarized below:

• We investigate several classification approaches and
propose a gradient descent classification model for
recognizing the underlying microscopic context states
associated with the sleep disorders.

2015 16th IEEE International Conference on Mobile Data Management

978-1-4799-9972-9/15 $31.00 © 2015 IEEE

DOI 10.1109/MDM.2015.42

44



• We introduce an online change point detection based
classification approach to help detect any abrupt
changes on streaming dataset for better microscopic
sleep state classification and data noise and uncertainty
reduction.

• We develop active learning based sleep monitoring
models which help reduce the extensive data anno-
tation effort and ground truth data collection from the
user personal space and help scale the model among
a community of individuals.

• We evaluate of our model based on two real-world
datasets, one with polysomnography result along with
the wrist worn accelerometer sensor values from 42
subjects [9], other with general labeled data collected
from 17 test subjects.

II. RELATED WORKS

In medical studies Polysomnography (PSG) is the ma-
jor sleep study to diagnose a patient’s sleeping quality [2].
Polysomnography records biophysiological changes that occur
during the sleep. Apart from PSG, some other sleep studies
focused on techniques, such as Multiple Sleep Latency Test
(MSLT) and Maintenance of Wakefulness Test (MWT) [10].
These diagnoses are cumbersome and need a lot of prior
setup, for example, in case of PSG it requires 12 channels
requiring almost 22 wire attachments to a patient. Obviously
this imposes a great level of discomfort to the patients and its
users. The authors of [11] developed a wearable neck cuff sys-
tem for monitoring physiological signals in real-time. A sleep
monitoring model using image analysis has been proposed in
[12], but it has proved inefficient in case of low light condition
at night. [13] used near-infrared cameras to overcome this
challenge but the images still created non-uniformity. A novel
sleep monitoring framework- LullaBy to capture and monitor
the sleeping environment using microphone, light sensor and
motion sensor has been proposed in [14].

Pressure bed sensors have been used to supervise the
postures and movements of the users in sleep [15]. Though
these methods are unobtrusive and do not create discomfort to
the users, but still it has not been streamlined due to its cost
and deployment issues. [16] used fine-grained body positions
from accelerometer data using WISP tags attached to the sides
of a bed. A novel framework for pressure image analysis to
monitor sleep postures including a set of geometrical features
for sleep posture characterization and three sparse classifiers
for posture recognition has been proposed in [17].

Sleep related research are gaining attention due to the
recent proliferation of low-cost easy-to-deploy technologies
based on mobile and ambient sensors and its large penetration
in the market. Commercial wearbale devices, such as Fitbit
[3], Zeo [18], Actigraph [4], Jawbone, Sleep Tracker etc have
been used extensively these days for monitoring sleep and
activities of daily living (ADLs). iSleep [19] uses the built in
microphone sensor of smartphone to detect the events which
are closely related to sleep quality like body movements,
coughing, snoring etc. The authors of [20] used the accelerom-
eter sensor of the smartphone to track the sleep duration and
user movement patterns. [21] proposed a passive approach to
track some stationary features, such as user silence, ambient

light, phone usage and charging etc for monitoring sleep habits
and developed a mobile application BeWell [22] for unified
health monitoring. [23] used the daily context information of
an user to define the sleep quality. Sleep Hunter [24] used
the accelerometer and microphone sensors of the smartphone
a fine-grained detection of sleep stage transition for sleep
quality monitoring and intelligent wake-up call. [25] proposed
to use change-point segmentation on PSG data to differentiate
macrostructural organization of sleep. A point process based
novel model for the assessment of heart rate variability and
respiratory sinus arrhythmia based on PSG data has been
proposed in [26].

In this paper we take a radically different approach and
look into the fundamental problem of scaling the sleep mon-
itoring models beyond a specific individual. To realize this
first we analyze the microscopic physiological contexts and
psychological clauses behind a sound or bad sleep. We inves-
tigate traditional classification algorithms to successfully detect
those events and propose a novel online change point detection
based method for enhancing the classification accuracy and
eventually help guide the design of a community scaling model
using active learning.

III. OVERVIEW OF SLEEP WELL FRAMEWORK

Sleep is not just a dormant part of our lives, we remain
very active and pass through several important stages of
sleep. Interference or disturbance in these states can cause
impatience, drowsiness and lack of concentration during the
regular activities of daily living. Therefore for maintaining a
good sleep hygiene we have to sleep a certain amount of time
in each of those sleep states. There are two main types of sleep
states:

• Non-Rapid Eye Movement (NREM) (also known as
quiet sleep). NREM consists of three states (stage-1,
stage-2, stage-3).

• Rapid Eye Movement (REM) (also known as active
sleep).

A complete and healthy cycle of sleep consists of a progression
from states 1 to 3 before reaching REM state, then the cycle
starts over again. If the REM sleep is disrupted and the person
wakes up, the person’s circadian cycle is disrupted. In order to
complete the cycle the person will move to REM state directly
next time. Thus it is very important to sleep a good amount of
time each day and maintain a good sleep cycle. REM sleep is
considered as active sleep because in this state people dream.
If a person is having a nightmare disorder too often it is
possible that he/she is having problems to complete the sleep
cycle. In this paper, we first focus on properly classifying the
sleep cycle into these finer states. We also propose to integrate
some other broader intermediate sleep states such as movement,
getting up from bed and getting up and sitting. These other
states would help to identify the casual and formal causes of
sleep disturbance and sleep latency and provide meaningful
insights on designing scalable sleep monitoring technologies
and automated assessment methodologies.

A. Sleep Well Architecture

Our proposed sleep well framework consists of the follow-
ing logical components.
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Fig. 1. An architectural overview of Sleep Well Framework

• Feature Extraction: After collecting raw sensor data,
this component preprocesses and extracts the low level
signal features as shown in Table I from the processed
raw sensor data. (Details in IV-A).

• Change Point Detection: After extracting features
and analyzing the sleep data, we noticed that change
point occurs in sleep transitions (transition from one
stage to another, for example unconscious movement
during sleeping, waking up, being restless in bed etc.).
The importance of these change points has proven to
be very effective as it help removing noises in the
data and detect the exact point of the sleep transition.
For example, when a person gets up from the bed and
starts walking, the accelerometer readings other than
sleep classes become noisy. Therefore by identifying
change points we can partition the data and have more
fine-grained information for easing the training effort.
(Details in IV-B).

• Classification: At this stage we train our model using
the features from processed raw sensor data and build
up our classification model to recognize the several
intermediate sleep states. We investigated an online
gradient descent [27] as our classification algorithm.
This is different from traditional gradient descent by
dealing with importance weights to collaborate with
active learning and learning reductions. To calculate
the average loss during the classification process we
propose to use squared loss function (Details in IV-C).

• Active Learning: After feeding the test data into
our classification model and getting the prediction,
active learning helps to calculate the informativeness
of each data points. If any data point falls within an
uncertain space and while predicting it is found to
be the most informative, then if the actual label of
the point is provided it would have more significant
impact on the classification model. This component
then initiate prompt for “query user label” and get
the ground truth from the user. Subsequently the labels
are then used for re-training and updating the model.
This component helps to ensure better classification
accuracy with minimal user feedback. This also helps
to scale the sleep monitoring model across multiple
individuals. The input from change point detection
method strengthens the active learning query selection

by asking the user to label the appropriate sleep state
transitioning step. (Details in IV-D).

IV. SLEEP WELL FRAMEWORK DESIGN

In this section we describe in details the design of our
Sleep Well framework. We first discuss about several micro-
states of sleep and feature extraction process. Next we discuss
an online change point detection algorithm to have a better
handle on the microscopic sleep state classification problem.

A. Sleep Event Detection and Feature Extraction

We extract low-level features using each of the three
components of the triaxial accelerometer signal to capture
the aspects of movements while sleeping. We use both time
and frequency domain features in our framework. As the user
is not physically active while sleeping, very few number of
movements are involved, so we choose a lower sampling
frequency. We extract features from data using windows of
60 samples, corresponding to 1 second of accelerometer data.
From each window we calculate the features mentioned in
Table I. Time domain features help to differentiate dynamic
to static movements. The frequency domain features help
identifying patterns within acceleration data, which aids in
discriminating discrete movements and their intensities.

1) Feature Selection: Our model is primarily focused on
community scaling, so fewer features will scale the model
computationally effective if we can achieve similar accuracy
with more features. We select the subset of features, best fit for
our model by applying Restricted Forward feature Selection
(RFS) algorithm. It was performed in two steps. First we
applied Forward feature Selection (FS) algorithm which ranks
the features in decreasing order of their accuracy. The FS
algorithm iterates through the feature space and measures
the Leave-One-Out-Cross-Validation (LOOCV) error for each
component in the feature space {f1, f2, f3.....fN}. In case of
traditional FS, after the first iteration, FS calculates the best
individual feature fi. In the next iterations, FS finds the best
subset consisting of two components, fi and one other from
remaining N−1 features. In the following iterations, FS ranks
more features and evaluates the subset accordingly, so that
after N iterations, the winner is the overall best feature set in
these N iterations. In the second step we invoke the RFS to
restrict the number of features to rank at each iteration. After
the first iteration we consider only the first N/2 ranked features
for the following iteration. After adding another feature to
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TABLE I. FEATURES USED FOR SLEEP MICRO-STATES CLASSIFICATION

Name Definition

Time
Domain
Features

Mean AVG (
∑

xi), AVG (
∑

yi), AVG (
∑

zi)

Mean-magnitude AVG
√

x2
i + y2

i + z2
i

Magnitude-Mean
√

x̄2 + ȳ2 + z̄2

Variance VAR (
∑

xi), VAR (
∑

yi), VAR (
∑

zi)

Co-Variance (Two-axis correlation) cov(xy) ; cov(yz) ; cov(xz)

Standard Deviation σx =

√∑
(x−x̄)2

n−1 ; σx =

√∑
(x−x̄)2

n−1 ; σx =

√∑
(x−x̄)2

n−1

Frequency
Domain
Features

FFT-Magnitude m
(x)
j = |aj + bji| ; m

(y)
j = |aj + bji| ; m

(z)
j = |aj + bji|

FFT-Energy

∑N
j=1(m2

j )

N for x, y, z respectively

the winner of the first iteration at the second iteration, we
consider the first N/3 components of the remaining ranks.
RFS repeats this process until it finds the best m feature
sets. The difference between conventional FS and RFS is that
RFS considers only a part of the remaining ranked features,
whereas FS considers all the features. Out of 8 features, the
feature selection algorithm chose 4 features (FFT-Magnitude,
FFT-Energy, Mean-Magnitude and Co-Variance) which help to
attain classification accuracy closer to using all the 8 features.

B. Change Point Detection

Change point detection helps find the abrupt variations
in the sleep data stream. While some change points provide
meaningful insights and some not, our motivation in this work
is to find the sleep transitions by calculating the change points
(abrupt signal changes) and distinguish between the important
and unimportant changes. This is not only helpful to detect the
sleep-related events appropriately but also help remove noisy
data points from the dataset. We develop a Bayesian online
changepoint detection [28] based algorithm for finer sleep
related event identification and online data noise reduction.

We first partition the entire sleep dataset in different regions
based on a run length [28]. Let, x1 :N = {x1, x2, x3, .....xN}T
denote the N data points observed over time T which is
divided into non-overlapping partitions. Consider if we find
K change points then let the data set of partitioned data be
{ρ1, ρ2, ρ3, ..., ρk} at time indices {t1, t2, t3.......tk} where by
definition t0 = 0 and tk+1 = N . The discrete probability
distribution over a time interval ti to tj is denoted by g (ti−tj).
Each partition ρt denotes a segment of the data at time t. The
length of the each partition or time since the last change point
occurred, is defined as “run length“, r. The run length goes
back to 0 if change point occurs, otherwise it increases by 1
as follows.

rn =

{
0, if changepoint occurs at (n− 1)

rn−1 + 1, otherwise

The conditional probability that a change point occurs on time
tk after the last change point at time tk−1 is

P (tk|tk−1) = g(tk − tk−1), where 0 < k − 1 < n (1)

We assume that the predictive distribution of a change point
at any time instant t only depends on the recent data. So the
change points are assumed to follow markov process. Thus
the prior probability of a change point at a time instant tk is
dependent on the probability distribution of the observed data

over the time interval and the preceding change point.

P (tk) =

k−1∑
i=0

g(tk − ti)P (tk−1) (2)

The change point detection algorithm finds the number of
change points and their position by calculating the posterior
probability P (rn|x1:n) and integrating it with the predic-
tive distribution P (xn+1|xn). We do this by calculating the
joint distribution of the current run length and observed data
P (rn, x1:n).

P (rn, x1 :n) =
∑
rn−1

P (rn, rn−1, x1 :n)

=
∑
rn−1

P (rn, xn|rn−1, x1 :n−1)P (rn−1, x1 :n−1)

=
∑
rn−1

P (rn|rn−1)P (xn|rn−1, xn−r :n)P (rn−1, x1 :n−1) (3)

Where P (rn|rn−1) is the transition probability and
P (xn|rn−1, xn−r :n) is the data segment likelihood
probability. We calculate the transition probability using
equation

P (rn|rn−1) =

{
h(rn−1 + 1), if rn = 0

1− h(rn−1 + 1), if rn = rn−1 + 1

where h(x) = g(x)/
∑∞

i=x g(i). We calculate the posterior
probability using Bayes‘s rule:

P (rn|x1 :n) =
P (rn, x1 :n)∑n−1
i=0 P (ri, x1 : i)

(4)

We calculate the posterior probability of the run length at
that time index which corresponds to a new data sample. The
pseudo code of this procedure is summarized in Algorithm 1.

Algorithm 1 Change Point Detection

1: Initialize: P (r0) = 1
2: for Each new data point xn do
3: Calculate the data segment likelihood probability,

P (xn|rn−1, xn−r :n)
4: Calculate the transition probability, P (rn|rn−1)
5: Calculate the joint distribution, P (rn, x1 :n)
6: Find the posterior distribution on current run length,

P (rn|x1 :n)
7: Calculate the predictive distribution of xn based on

previous observation. P (xn|xn−1)
8: end for
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C. Classification

We classify the sleep states using an online gradient descent
method which leverages the importance weight on streaming
data samples. To build up our classification model accurately
we consider other sleep contexts such as body movements,
but most of the sample data points resemble stationary states
during the sleeping. Online gradient descent with importance
weight aware updates [27] helps to overcome this limitation of
data by assigning weight to classes with lesser data points. The
key principle here is: The assignment of importance weight h
to a sample that make it appears like a regular example of h
times in the dataset. We assume C is our classification model
and use squared loss function for examining the consistency of
C. The goal of our classification model is to minimize the loss
function which reflects better accuracy. After each iteration of
gradient descent, C is not altered, rather it is improved by
adding an estimator h in order to optimize the loss function.
We assume y is the true label and p is prediction of our model,
where l(p, y) is the loss function as shown in Eqn. (5). At each
step C is updated using Eqn. (6)

l(p, y) =
1

2
(y − p)2 (5)

Cm+1 = Cm + h(x) (6)

Let w be the vector of weights and the training set is a set
of (xi, yi, hi), i = 1, ...., T where xt is a vector of d features.
For linearity we assume p = wTx. Our goal is to assign w in
such a way so that the model C converges to the optimized
solution. Assigning weight to a data point (x, y), h times in
a row have a cumulative effect with scaling factor k(h) as
shown in Eqn. (7). This scaling factor is defined by Eqn. (8)
where η is the learning rate [27]. At each iteration this weight
is updated accordingly to the loss function l. Our proposed
classification algorithm for finer non-stationary sleep states
detection is shown in Algorithm 2.

wi+1 = wi − k(h)x (7)

k(h) =
p− y

xTx
(1− e−hηxT x) (8)

Algorithm 2 Importance Weighted Sleep Classification

1: Input: Extracted feature vectors from raw data.
2: Output: Predicted Sleep Class y.

Update the importance weight of the data points.
3: Initialize: ∀iwi ← 0
4: Get the feature vector for data point xi

5: Predict the class label yi for all xi

6: Calculate the scaling factor k(h)
7: for i = 0 to N do
8: Calculate the weight wi for each xi

9: Update: wi ← wi − p−y
xT x

(1− e−hηxT x)x
10: end for

D. Active Learning based Community Scaling

Our goal in this paper is to scale the sleep monitoring
model to a community of individuals. While a significant
research has been done on sleep monitoring and assessment
and intervention strategies, lack of novel scaling algorithms
prohibit the deployment, large scale validation, and acceptance
of these technologies for healthy lifestyle, smart health and
independent living applications. In this section we investigate

how active learning based machine learning algorithms help
build an informative model in presence of a minimal labeled
datasets. We also depict how change point detection based
time-series data analytics methodology help reduce the data
uncertainty and guide to the selection of most informative
query.

Active learning has been proved to be very effective by
combining it with supervised learning when a large pool of
unlabeled data is available. Though traditional passive learning
takes the initiative to label the unlabeled data randomly, but
most of the data points which are selected randomly does not
ensure better classification. It is difficult to collect all of the
sleep related ground truth information from the user though
by using the accelerometer sensor it is possible to broadly
monitor the user sleep behavior and the specific sleep duration.
To collect more fine-grained details about the sleep we train
our proposed gradient based classifier with the causes of sleep
disruption (such as waking up from nightmare, muscle cramp
etc). By applying active learning we propose to collect the
labels of these informative data points so that our model can
better classify the sleep stages and conditions and help scale
this model in presence of minimal amount of ground truth.
While applying active learning, one constraint is we have to
assure that the whole labeling process doesn’t become too
intrusive. Crowd-sourcing can help us overcome this constraint
by collecting a large amount of labeled data via arbitrary
participants and provides aid in community scaling.

1) Query selection: In the following we briefly discuss the
query selection approaches for active learning:

• Query Synthesis: The active learner asks the human
annotator for “label membership“ by using member-
ship queries. In this approach the learner generates
instances rather than sample from existing unlabeled
set. But the problem with this approach is human
annotator may have difficulty interpreting and labeling
arbitrary instances.

• Stream based selective sampling: Each unlabeled
instance is drawn at a time from the input source and
the learner may decide instantly whether to query the
instance or not. As we are using online classification
algorithm and the data are processed in stream, we
use this sampling strategy for our active learner.

• Pool based sampling: Evaluates and ranks the entire
collection of unlabeled data before selecting the best
query from a pool of instances.

2) Sampling metrics: Different sampling metrics such as
least confident, margin sampling or maximum entropy based
sampling are common in active learning algorithms. We pro-
pose to use the importance weighted active learning approach
to build our community scaled sleep monitoring model [29].
To decide which points are most informative, we first calculate
the utility measurements of unlabeled data points. Whether a
data point xt will be queried or not depends on the history of
labels seen so far based on our change point detection, gradient
based classification and the identity of the point. If a change
point is detected at data point xt at time index tn, and the
label of xt is inconsistent with the label of current run rn, we
invoke active learning. A probability measure pt is maintained
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for each data point xt. A coin flip, Qtε{0, 1} with E[Qt] = pt
determines whether the data point will be queried or not. If
the data point is queried based on the past history, then we
update importance weight by 1

pt
.

The active learning algorithm maintains an effective hy-
pothesis space Ht through out the process. Initially, Ht con-
tains all of the hypotheses from global space H . The expected
loss of a hypothesis, hεH at time T is defined by Eqn. (9).

LT (h) =
1

T

T∑
t=1

Qt

pt
l(h(xt), yt) (9)

As it progresses, Ht becomes narrower by taking a subset,
and ensuring that the factual loss of Ht+1 is not much worse
than the smallest loss, L∗t in Ht.

Ht+1 = {h εHt : Lt+1(h) ≤ L∗t (h)} (10)

For each data point xt, the active learning algorithm looks at
the range of predictions and their losses by hypotheses in Ht
and sets the sampling probability to the size of this range.

pt = max
f,gεHt

max
y

l(f(xt), y)− l(g(xt), y) (11)

If the range is too high than the rejection threshold then the
hypotheses disagree greatly with each other. This certifies that
the current prediction of xt lies in the uncertain region. The
active learning algorithm then queries for the label to settle the
uncertainty. Our proposed active learning algorithm for largely
reducing the micro-sleep states annotation effort is shown in
Algorithm 3.

Apart from using only predefined class labels, the user can
introduce new unseen class along with indicative attributes
with the help of active learning. While prompting for label
of data point xt, we also collect the reason for their choice
of label in restricted number of words. We find specific
attributes from the provided reason and associate that attribute
with the data point xt. For example, if a user labels a data
point as “getting up & sitting” and specifies the reason as
“woke up from nightmare”, Sleep Well framework extracts the
attribute “Nightmare” from the provided reason. Subsequently
we re-evaluate our classification model and apply a recursive
classification to associate the provided attributes to similar data
points. This help our model to achieve microscopic sleep state
classification, and finer evaluation for more elaborative and
accurate diagnosis of patients and eventually scale the model
beyond an individual premises.

V. SLEEP WELL FRAMEWORK EVALUATION

To evaluate our Sleep Well framework we focus on the
following specificities. i) The performance of different classifi-
cation algorithms in comparison to our classification approach,
ii) Cross-user performance by building model with a user’s
sleep model and testing with someone else’s model, iii) Per-
formance of our framework using different wrist-band devices
with accelerometer sensor, iv) Impact of active learning on
our model, v) Precision of classifier when sleep attributes are
introduced in the model by active learning.

A. System Implementation

We have implemented and tested our model by using two
separate devices - wActiSleep-BT [4] and EZ430-Chronos [8],
both of these devices contain 3-axis accelerometer sensor.

Algorithm 3 Active Learning with Importance Weighted Sam-
pling

1: Input: L = set of labeled instances {(x, y)l}Ll=1
U = set of unlabeled instances {(x)u}Uu=1
A classifier model, Cθ

2: Output: Updated classifier model, Cθ.
3: Updated importance weight of queried data points.
4: for every instance in U do
5: set pt of instance xt using equation (11)
6: yt ←− Prediction of Cθ for xt

7: queried ←− False
8: \∗ Check if xt is a change point or not ∗\
9: if xt falls in between successive run rn−1 and rn using

the posterior probability P (rn|x1 :n) then
10: if yt is not same as the label of current run rn then
11: query label yt.
12: Lt ←− Lt−1 ∪ {xt, yt,

1
pt
}

13: queried ←− True
14: end if
15: end if
16:

17: if pt is greater than rejection threshold and queried =
False then

18: query label yt.
19: Lt ←− Lt−1 ∪ {xt, yt,

1
pt
}

20: else
21: Lt ←− Lt−1

22: end if
23: Update the hypothesis space Ht

24: end for

EZ430-Chronos device also has heart monitor, pressure and
temperature sensor. We collected raw accelerometer data from
both of these devices using API provided by the manufacturers.
We implemented our own software to extract raw data using C#
programming language and then extracted the features using
python numpy library. We sampled the data in 60Hz frequency.
For importance weighted classification and active learning we
used the machine learning tool- Vowpal Wabbit [30].
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Fig. 2. Accelerometer reading when
standing
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Fig. 3. Accelerometer reading when
lying

B. Ground Truth Collection

We asked the users to log their sleep habits using sleep di-
ary to correctly label the data points. We asked the participants
to note down their sleep routines (preferred sleeping postures,
regular hours of sleep, light intensity and sleep latency) each
day of the experiment. There were many challenges involved
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Fig. 4. Raw accelerometer data from
Dataset V-C1.
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Fig. 5. Raw accelerometer data from
dataset V-C2
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Fig. 6. Timestamped raw accelerom-
eter data.
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Fig. 7. Detected change points asso-
ciated to figure 6

while collecting the ground truth from the sleep diary. For
example, consider two different scenarios, 1) the user is awake
& lying and 2) awake & not lying. In case of stationary
states (when the user is not moving but he is either lying
or just sitting in the bed) the accelerometer readings are
almost identical. Also when a user gets up in the middle of
the night and performs some activities (checking his phone,
going to bathroom etc.), there are movements involved. It was
challenging to identify which movements were during sleep
and which were due to some activities. The user was unable
to correctly state the reason of movements in some cases. In
Fig. 2 and 3, we can see two different movements (awake
and standing, awake and lying). The user went to bathroom
at 2:03 AM and came back to bed at 2:12 AM. On the other
hand at 3:03 AM, the user was moving while lying. Therefore
to assist the ground truth collection, we investigate a posture
analysis using the inclination of the accelerometer. We observe
that when perpendicular to gravity, accelerometers are more
sensitive to small changes in inclination, but as the inclination
increases the accelerometer becomes less sensitive to it. To
resolve this issue we propose to use two axis. As we are using
wrist worn bands, inclination of axis y and z are used to define
the posture of the user. The z axis measures the direction of
the gravity in the horizontal position, so coupling with the
inclination of x axis help infer the posture of the user. We
calculate the inclination of the device by using Eqns. (12)
and (13). We faced a challenge to define the threshold values

+x 

+y 

+z 

1g 

Fig. 8. Accelerometer
orientation

θy = tan−1(
y√

x2 + z2
)

(12)

θz = tan−1(
z√

x2 + y2
)

(13)
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Fig. 9. Inclination mea-
surement accuracy

for these inclinations as different users have different sleeping
postures. We experimented with different sleep positions (On
side, Face down, On your back) and calculated the inclination
of the device in those positions. We ran the J48 decision
tree classifier on the postural data. Based on the results of
the classifier we defined the inclination threshold for different
states, such as if θy < 16◦ then the user is standing, if
16◦ < θy < 61◦ the user is considered sitting, and for
θx > 61◦ the user is considered lying. Fig. 9 shows the results
of our posture calculation using the inclination method. We

also installed couple of motion sensors in the environment to
strengthen our ground truth collection. We put two motion
sensors (Aeotec Multisensor [31]) near both sides of the bed
and another one mounted near the user’s body when he/she
is sleeping. The sensor mounted near the body captures the
motion when the user is in the bed while the other two on
the sides of the bed monitor when the user is out of the bed.
While extracting information from the sensor, we assumed that
consecutive two data points from the sensors mounted on the
sides correspond to getting in and then getting out of the bed.
These multisensors also have built in light sensor, so we can
detect the light condition in the sleeping environment using
these sensors. Now we are able to validate the movements of
the users and calculate the overall time he/she remained out of
the bed efficiently by consolidating inclination measurement,
motion sensor and data from sleep diary. We were able to label
most of the data points correctly and remove noisy data points.

C. Datasets

We use real data traces collected from ≈ 60 users to
validate the performance of our Sleep Well framework. We
also compare our results for data from different body position.

1) Dataset with Clinical Ground Truth: We evaluate our
model using publicly available benchmark dataset from Tech-
nische Universität Darmstadt [9] which provides sleep phases
determined by clinical polysomnography. The data set consists
of timestamped raw acceleration data collected using wrist
worn data logger at a sampling rate of 100Hz and includes
the sleep stages (movements, awake, NoREM 1-3, REM,
unknown) from 42 lab patients. The trend of raw accelerometer
reading in this dataset is shown in Fig. 4. There are seven
different classes in this dataset among which majority of
the data points are labeled as unknown (51%) and awake
(24%) with only a few important data points which affect
the classification model. After inspecting the dataset, we note
that the value of different data points of different classes were
very close which imposes bias in our classification model. We
handle this bias by assigning less weight to abundant data
points (unknown and awake) and improve the classification
process and accuracy.

2) Actigraph and Chronos Dataset: We collected sleep data
using wActiSleep-BT and EZ430-Chronos at a sampling rate
of 60Hz from 17 participants. We noticed that wActiSleep-BT
device has better sensitivity due to slight movements rather
than EZ430-Chronos which help differentiate between actual
movements and sleep patterns from a user. Almost 65% data
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Fig. 13. Different active learning
techniques for Dataset V-C2.

points of this dataset belong to Sleep class and 22% to Awake
class. Fig. 5 shows the raw readings from ActiSleep device.

D. Evaluation Methodology

1) Supervised Learning: We carried out our experiments
with 17 participants (11 males and 6 females) over two weeks
where each participant has provided data for 8-10 days. We
recorded the time when a subject went to bed and woke up
from the participant’s sleep diary. Each participant was asked
to put on the device on their waist before going to bed. Out
of these 17 participants, 7 wore the EZ430-Chronos device
and other 10 put on wActiSleep-BT. We split each data set
into two parts, one for training and other for testing. We
applied our classification models on the datasets mentioned
in sections V-C1 and V-C2.

TABLE II. ACCURACY (DATASET : V-C1 )(%) (INTRA USER)

OSGD SVM MP RF LR LB DT

Unknown 98.76 96.50 85.80 99.01 98.93 98.37 97.95
Stage-1 69.45 44.44 60.36 58.57 47.63 61.82 70.40
Stage-2 70.29 41.02 58.54 59.09 48.18 68.46 71.87
Stage-3 68.36 39.15 63.36 48.24 49.33 60.77 63.94
REM 58.22 37.28 49.11 41.55 38.31 41.03 59.10

Awake 74.78 68.12 72.10 70.01 64.96 66.90 72.73
Movement 72.59 69.31 62.88 70.66 65.60 63.27 71.25

Average 73.20 56.54 66.13 63.87 58.99 65.80 72.46

TABLE III. ACCURACY (DATASET : V-C2 )(%) (INTRA USER)

OSGD SVM MP RF LR LB DT

Sleep 87.79 87.98 80.8 84.01 73.32 76.63 88.52
Awake 77.9 71.35 75.66 67.91 73.56 70.21 75.69
Movement 76.25 74.87 68.32 68.41 70.27 72.11 75.14
Getting up
& sitting

72.11 64.58 67.39 68.11 64.85 69.15 70.02

Getting up
from bed

78.21 69.89 70.36 70.1 71.19 62.39 73.39

Average 78.45 73.73 72.50 71.70 70.63 70.09 76.54

a) Intra User Classification: We tested different classi-
fication models with our proposed Online Stochastic Gradient
Descent (OSGD) method - Support Vector Machine (SVM),
Multilayer Perceptron (MP), LogitBoost (LB), Random Forest
(RF), Logistic Regression (LR), and Decision Tree (DT) -
using different user’s dataset. The accuracy of different clas-
sification model using one of the subject’s dataset from each
datasets is shown in Table II and III. The average accuracy of
OSGD is 73.20% for a patient from dataset V-C1 and 78.45%
for dataset V-C2. This attests that consideration of inclination
and sensor data and using it to correct labels in dataset V-C2
help yield better classification results. Also the results indicate
that putting the device on the waist endows better accuracy.

We investigated this disparity, and found that hand movements
are more abrupt and arbitrary which results in more confusing
data points. Also very subtle body movements are difficult to
distinguish when using a wrist worn accelerometer.

The major accuracy improvement was noticed for inferring
the micro sleep state. Although individual accuracy for classes
- Stage 1, Stage 2 and REM for Decision Tree (DT) classifier
was better in dataset V-C1, but the average accuracy of
inferring sleep states (sleep stage 1-3, REM) is 66.58% which
is better than the average of DT classifier (66.32%). While for
our dataset we achieved 87.79% accuracy.

b) Cross User Classification: It is important that a
classification process will not only recognize the sleep states of
an already seen user, but also help generalize the classification
for new users. We cross validated our approach with inter
user classification model. We trained our model using 20
patient’s data from dataset V-C1 and tested the trained model
with remaining 22 patient’s data. The average accuracy was
69.79%. With data from dataset V-C2 we achieved 75.46%
overall accuracy. Fig. 10 and 11 shows the results in Precision
(percentage of times that a recognition result made by the
model is correct), Recall (percentage of times that a sleep state
is detected) and F1-measurement (combination of both recall
and precision) for both the datasets. Also in Fig. 14 represents
the trend of loss function for different datasets.
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partition.

2) Active Learning Experiments: In addition to supervised
learning, we evaluate how we can improve the classification
result using active learning with minimal user feedback. We
have discussed our active learning algorithm in section IV-D.
We sampled both the datasets with a window of 60 seconds on
accelerometer data. Each sample is a feature vector with 16
dimensions. Initial labeled dataset L1 consisting of 135089
samples (from dataset V-C1) and L2 consisting of 42,000
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samples (from dataset V-C2) are provided to the individual
classifier C1 and C2 for training. Then unlabeled dataset U1

of 510113 (dataset V-C1) and U2 of 121,147 samples (dataset
V-C2) are used to test the classifier C1 and C2. The samples
are provided sequentially with respect to timestamp.

The uncertain data points, meaning the points which the
classifier was unable to classify are queried in accordance
with our active learning algorithm (3). We calculated the loss
function at each phase after a data point is queried and the
model is re-trained. We compared our result with randomly
selected samples for labeling. To further assist the active
learning process we validated the results with our change
point detection (CPD algorithm discussed in IV-B. When a
change point is detected in the dataset, we cross validated the
change points with the classification result with respect to the
timestamp. Figs. 6 and 7 plot the association of change points
with timestamped accelerometer data points. If the label of
the sample is not consistent between each of the model we
imposed active learning and queried the data point. Initially
with L1 and L2 we note the average classification accuracy
as 63.8% and 70%. We applied importance weighted active
learning, and see that the model converged faster with change
point detection. 86719 samples (17% of total samples) from
U1 and 8843 samples (7.3% of total samples) from U2 were
queried for the model to converge in presence of CPD which
helped achieve 72% (dataset V-C1) and 76.89% (dataset V-C2)
accuracy, while with randomly selected data points 68% and
73% accuracy was observed. Fig. 12 and 13 shows the change
in loss function with random sampling, active learning with
and without CPD techniques with different datasets. We see
that active learning with CPD outperforms the other strategies.
In case of dataset V-C1 we notice from Fig. 12 that the change
in loss function is irregular. After analyzing the dataset V-C1
we found out that due to the presence of noisy data points the
loss was increased.

Fig. 16. Visual illustration of sensor
activation.
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Fig. 17. Percentage of data points
properly labeled via crowdsourcing.

We ran a simulation for crowd-sourcing using vowpal-
wabbit toolkit [30]. During this process we faced a challenge
regarding what kinds of data to show which can reflect the
sleep classes. As audio, video or image data violate the privacy
of the user so we had to come up with a different methodol-
ogy rather than traditional image based crowd-sourcing. We
presented some semantic information from the users sleeping
habit (regular hours of sleep, sleep latency, average number
of times the user gets up at night, how much the user moves
on average in percentage and light condition) and a visual
illustration of sensor activation (discussed in section V-B) to
the annotators. In Fig. 16, we show an example of visual
illustration. The double circled objects represent sensors and

the activation is marked by red color. In this example the
sensor mounted near the head and the sensor mounted near
the right side of the bed are activated as the user was getting
up from the bed. Five participants participated in the crowd-
sourcing experiment and each participant was given 100 data
points to label. In Fig. 17 we show the number of data points
each participant was able to label. The average percentage of
correctly labeled data was around 83.6% which is sufficiently
high and can be chosen as input to the classifier.

3) Introduction of New Unseen Class and Attributes: A
user is able to personalize the model by introducing new
unseen classes and attributes with the help of active learning.
We simulated our active learning algorithm by introducing new
class labels in the classification model. While collecting the
query label we also asked for the reason behind choosing the
label from the annotator, so that we can look for important
indicators for the clinicians. We restricted the length of the
reason in 5 words. For example, if a sample is queried and
the annotator labels the sample as getting up and sitting,
he can also state the reason for labeling the data such as
muscle cramp, stress or anxiety, nightmare etc., which are
microscopic events for sleep disruption. We applied a nested
classification by considering these microscopic events as class
labels. After classifying using our defined general class labels,
we partitioned each class label data and applied our classi-
fication algorithm in separate partitions again by considering
the provided attributes as labels. For example, let us assume
an user states reason ‘A’ as the cause of sleep disruption
or any kinds of changes in the pattern. Our framework then
partitions the data and the number of partition is equal to the
number of class labels (in our model it is 5), as a result in
each partition the data points are of same class. Sleep Well
framework then performs a classification on separate partitions
with class label ‘A’. This nested classification process ascertain
the microscopic sleep events. The precision, recall and F1 score
of recorded attributes (muscle cramp, heatburn, stomach ache,
stress, anxiety, and nightmare) for parent class “getting up and
sitting“ is presented in Fig. 15.

VI. DISCUSSION AND FUTURE DIRECTIONS

In the current version of Sleep Well framework, we did not
discuss about individual sleep scoring based on our sleep state
classification. Most of the sleep scoring models like Pittsburgh
Sleep Quality Index (PSQI) [32] or Webster et al. [33] do not
consider the habit of individual’s sleep. In our experiment,
we found that one participant was moving frequently while
sleeping and woke up 2 or 3 times at night to use the bathroom.
Even if the participant had disrupted sleep according to our
data, but in accordance to participant’s feedback he had a
sound sleep. We look forward to investigate the sleep habits of
individuals (like movements and getting up frequently) using
change point detection in future and devise a dynamic sleep
scoring module.

In current version of our framework, we invoke the change
point detection only in case of active learning. As a future
research direction, it is possible to combine change point
detection with classification model to perform a more thorough
time series analysis. For example, abrupt sleep disturbances
(muscle cramp, nocturnal panic attacks etc.) cause sudden
changes in the data points. It would be beneficial to capture
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these subtle changes and correlate the run length with the
classification process.

In the current implementation, we considered only the
inclination of the device to infer the user’s current posture.
Therefore, another future direction is to integrate the locomo-
tive activity (such as sitting, standing, walking etc.) recogni-
tion with our framework for improving the noise reduction
methodology. For active learning experiments we assumed
that the user will always provide the correct label. In real
life, it is possible that the user may provide wrong label or
leave it blank. In such cases, imperfect annotation handling
and optimal querying can be further studied to improve the
performance of active learning. This is also applicable for
crowd-sourcing the sleep data for malicious user identification.
In our current state, we collect the reason of the label from
the user and extract the important microscopic attributes from
the provided reason. For future, these feedbacks can be further
leveraged to inspect the nature of various sleep disturbances at
the microscopic level which will greatly help in longitudinal
sleep assessment and diagnoses.
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VII. CONCLUSIONS

In this paper, we described the design, implementation and
evaluation of Sleep Well, a sleep monitoring framework which
classifies the microscopic sleep states using wearable devices.
The proposed algorithm formulated in a gradient descent
approach, cooperate with importance weight aware updates.
We also consolidated our framework by blending change point
detection and active learning in the process. Our classification
achieved 78% accuracy with the aforementioned experimental
setup. The empirical results demonstrate the effectiveness
of our framework in determining different sleep states. The
result increased by 7% when active learning was advocated.
Therefore, the result support faster convergence to optimal
accuracy using minimal user feedback in presence of active
learning. Besides with the help of change point detection, we
were able to validate and interpret the transitions between these
sleep states. In future we will investigate the combination of
change point detection and classification to further improve the
accuracy. Also by conforming attributes from user provided
feedback into our architecture will further provide meaningful
insights for better understanding of sleeping behavior.
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