Scaling Human Activity Recognition via Deep Learning-based Domain Adaptation.

Published in PerCom, 2024

Md Abdullah Al Hafiz Khan, Nirmalya Roy. In IEEE international conference on Pervasive Computing and Communication, PerCom 2018. Athens, Greece.

Download PDF

Abstract:

We investigate the problem of making human activity recognition (AR) scalable–i.e., allowing AR classifiers trained in one context to be readily adapted to a different contextual domain. This is important because AR technologies can achieve high accuracy if the classifiers are trained for a specific individual or device, but show significant degradation when the same classifier is applied context–e.g., to a different device located at a different on-body position. To allow such adaptation without requiring the onerous step of collecting large volumes of labeled training data in the target domain, we proposed a transductive transfer learning model that is specifically tuned to the properties of convolutional neural networks (CNNs). Our model, called HDCNN, assumes that the relative distribution of weights in the different CNN layers will remain invariant, as long as the set of activities being monitored does not change. Evaluation on realworld data shows that HDCNN is able to achieve high accuracy even without any labeled training data in the target domain, and offers even higher accuracy (significantly outperforming competitive shallow and deep classifiers) when even a modest amount of labeled training data is available.